
Logic Gate Arithmetic and Quaternions
Christopher O’Neill

BAEC, Civic Centre, Main Street, Bray, Co. Wicklow

7 December 2020

Abstract

A new method for Logic Gate Arithmetic is proposed allowing sets to
be added, subtracted, multiplied, and divided in an entirely new way leading to
an alternate and expanded appreciation of Set Theory. 11 new Logic Operators
are derived from the known Logic Operators: AND, OR, NOR, XOR, and
XNOR and their relationships are described extensively. Utilising the
principles of Dimensional Gate Operators (DGO), the new operators are
shown to be directly related to dimensionality, both higher and lower, and the
relationship to the Quaternions is given a fledgling treatment.

Background & Terminology

Logic Operators are an important part of modern Computer Systems
and Set Theory. There are six primary Logic Gate Operators; AND, OR, NOR,
XOR, XNOR and NOT, as they are traditionally perceived. More accurately,
we could say that there are only 3 (AND, OR, and XOR), with the NOT
operator being more of a decorator acting on these to create the other 2 (anti-
operators), for a total of 5 in total.

In ‘REIMAGINING COMPLEX NUMBERS’[1], I explored the
possibility that these Logic Operators were incomplete and added 11 more —
for a total of 16. Shortly after writing this, I watched a video by N J
Wildberger called “Implication and 16 logical operations” and realised that he
had arrived at the same conception nearly a full two years, before I had.[2]
Wildberger derives his new set of logic operations in a formal algebraic sense
using Bool Algebra and goes on to name some of them in relation to the Stoic
Logic of Modus Ponens i.e. implications and others in relation to their own
internal properties.

For example, the Logic or Truth table that corresponds to the binary
number ‘0000’ (read right to left), he denotes as ‘0’ or ‘zero’. It’s counterpart
‘1111’ is therefore ‘1’. ‘IMP’ stands for implication and OT1 stands for
‘Original Term’.

Tables 1: Wildberger’s 16 Logic Operations

Once a naming convention is in place, it doesn’t really matter how it
got there. However, these new logic operators lack Boolean Algebra symbols,
like ‘^’, ‘V’, ‘∆’ and ‘!∆’.[3][2] To counteract this, I will propose my own
naming convention. I developed this method, before realising that Wildberger
had already given names to all of the logic operations — I must have skipped
over that section of the video.

In any case, I’m not too concerned with the prospect of different
naming conventions, this earlier on in my research. After all, the XOR and
XNOR logic gates are sometimes called EOR and ENOR, without much
complication, and there are numerous variations used for symbols throughout
the literature, including ‘!’ and ‘¬’ for NOT etc.

More confusingly, however, is applying the binary numbers to the
Truth Tables. Binary numbers are usually written horizontally, whereas Truth
Tables are nearly always vertical (See the Appendix). When compiling
Wildberger’s operations into Tables 1, it seemed necessary to list the
operators, as though their binary numbers are being read from ‘right to left’.
To avoid headaches, I will continue with this convention. And so, without
further ado, I will layout the framework for how I derived all 16 Logic
Operators from the original six.

“Logic, dear Watson”

The binary numbers ‘0000’ to ‘1111’ can be used to represent all 16 of
the Dimensional Gate Operators. However, some of these operations don’t

0 NOR NIMP2 NOT2 NIMP1 NOT1 XOR NAND

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

AND XNOR OT1 IMP1 OT2 IMP2 OR 1

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’

appear all that logical. To alleviate this concern, I decided to attempt to derive
the other eleven operators from the original five.

Table 2: “A rose by any other name?”

The first step was to combine the known logic gates; AND, OR, XOR,
NAND, XNOR and NOR to see if we could create any knew terms. We can
get to XOR, by adding AND and OR together, using the OR operator:

((^) V (V)) = ∆

But this is obvious and doesn’t lead us out of the loop into the
unknown parts of the DGO. Similarly with ((^) ^ (V)) = ^. It is easy to see
how this method will lead us in circles.

Taking a step back and reexamining the Truth Tables for these
operations, I realised that there were two more ‘binary’ numbers staring me in
the face: ‘1010’ and ‘1100’. These are equivalent to Wildberger’s OT1 and
OT2. However, I identified them as RIGHT (or ‘R’) and LEFT (L), as in Right
and Left Multiplication. Applying the NOR operator, !R (NOT RIGHT) and !L
(NOT LEFT) are easily obtained.

From here, we can get to a new Logic Operator; ‘0100’, which is made
from the combination of ∆ and !L:

((∆) ^ (!L)) = 0100

I’ve called 0100 ‘^U’ (meaning AND UP), because it is similar to
‘^’ (1000) shifted ‘up’ one space. The NOT version of this gate is 1011 giving
us; ‘!^U’ (NOT AND UP). Similarly, !V shifted down one space gives us
0010, so this is ‘!VD’ (NOR DOWN).

Therefore, ‘!VD’ is equal to 1101.
Together with the NOT versions of these two new Logic Operations,

we are able to fill 14 of the 16 arrangements in Table 2.

? NOR ? ? ? ? XOR NAND

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

AND XNOR ? ? ? ? OR ?

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’

Table 3: All 16 operations with their names and symbols

Somewhere along the line, ‘0000’ and ‘1111’ were named: i.e. “N” and
“!N” respectively (standing for “NONE” and “NOT NONE”).

These could equally be written as “NOT ALL” (NA) and “ALL” (A).
Both ‘None’ and ‘A’ are already symbols in Boolean Algebra, so “NONE” (N)
and “NOT NONE” (!N) are used instead.

Getting to ‘N’ and ‘!N’ from any of these gates is a simple matter. All
you have to do is apply one gate together with its NOT version:

((V) ∆ (!V)) = N

The reverse is given by:

((!V) ∆ (!V)) = !N

Now that we have all 16 Dimensional Gate Operators and their
Boolean Algebra symbols in place, we can explore the relationships between
these and even write them in terms of one another. For example, all of these
statements are TRUE:

((R) ∆ (L)) = ∆ ((!N) !∆ (L)) = !L (!VD) !∆ (L) = !^
((∆) ^ (!L)) = ^U

This means that the last equation in this list can equally be written as:

((R) ∆ (L)) (!(!VD) !∆ !(L)) ((!N) !∆ (L)) = ^U

This is a lot to take in and remember at first glance, so I’ve decided to organise
all this information in the following tables:  

N !V !VD !R ^U !L ∆ !^

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

^ !∆ L !^U R VD V !N

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’

Fig 0, 1 & 2  

Fig 3, 4 & 5

Fig 6, 7 & 8

Fig 9, 10 & 11

Fig 12, 13 & 14  

Fig 15

We have already shown that we can do the basic rules of arithmetic
with these gates (like bringing terms across the equals sign), so we should be
able to do more complicated affairs, like addition, subtraction and/or
multiplication and division. For example, we can try to rewrite R ∆ L to
produce (!^));

R ∆ L = ∆
(R) ∆ (∆) = ((VD) ∆ (!^))

(R) ∆ (∆) / ((VD) ∆) = (!^)

Another more convoluted example, this time rewriting ((∆) ^ (!L)) for (VD):

(∆) ^ (!L) = ^U
((∆) ^ (^U)) V ((∆) V (^U)) = ^U

!(((∆) ^ (^U)) V ((∆) V (^U))) = !^U
(!∆)^(!^U) V (!∆)V(!^U)/(!∆) ^ = VD

Later on, we will apply these simple methods to Set Theory, as a whole.

Some Notable Gates

In previous research papers we have come across Dimensional Gate
Operators like ∆ (XOR), which represents the rules of Real Number
Arithmetic and !∆ (XNOR), which represents the rules of Complex
Arithmetic. This shift in how we do arithmetic allows us to go from the 1-2

dimensional lines of the Real Numbers and into the 2-3 dimensional realm of
the ‘Complex Plane’.

Unlike, the numbers of the Complex Plane, however, there are no
algebraic numbers here. This is because the √-1 (or i) is equal to ±1 in !∆.
Therefore, they are simply ordinary numbers with a different arithmetic rule
set. You might be tempted to think — as I did — that ∆ also governs the rules
of the Quaternions and Octonions. But this is not the case.
Unlike, the numbers of the Complex Plane, however, there are no algebraic
numbers here. This is because the √-1 (or i) is equal to ±1 in !∆. Therefore,
they are simply ordinary numbers with a different arithmetic rule set. You
might be tempted to think — as I did — that ∆ also governs the rules of the
Quaternions and Octonions. But this is not the case.

One important feature of the Quaternions is that they are non-
commutative; that is A(B) =/= B(A).

Where do we see this feature in the DGO?
We see it in places like !VD, !R, !^U, and VD, where A(-B) =/= B(-A).

Quaternions are governed by a mix of !VD and ^U logic, because they are
non-commutative for different valued quaternions, whilst retaining the !∆ rule
set of the imaginary numbers, when values i, j, k are the same:

i2 = j2 = k2 = -1

ij = k, ji= -k
jk = i, kj = -i
ki = j, ik = -j

Left to Right: ∆, ^U, and !VD

The Quaternions are made from two groups of !VD and one of ^U. This
asymmetry allows for the loop to be closed and also explains why these
higher-dimensional algebras can only be order 2n.

0 0 0

0 1 1

1 0 1

1 1 0

0 0 0

0 1 1

1 0 0

1 1 0

0 0 0

0 1 0

1 0 1

1 1 0

Dimensional Spaces

Let’s return to Fig 0-15. What do you notice about these 16 graphs?
Other than how great they all look… That’s right. It is clear that some of them
fit together like jigsaw pieces. For instance, it is clear that Fig 1, 2, 4, & 8 form
a ‘Set B’. Similarly, we can make ‘Set C’ from the figures 7, 11, 13 and 14.

The horizontal and vertical lines appear to make another set, so we will
call that ‘Set D’. That just leaves the final four graphs; {0, 6, 9, 15} or ‘Set A’.

There is a distinct pattern emerging in how these sets are dispersed
across the entire binary number line, here represented in their decimal form:

Fig 16: All four sets; A, B, C, & D. This pattern explains the frequency of the NOT values, as
they are represented in the DGO.

The first composite graph (Fig 17), shows the domains of N (in the
bottom lefthand corner), ∆ immediately above that, !∆ in the lower righthand
corner and !N in the top right.

Fig 17: A = {N, ∆, !∆, !N}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What matters here is not the order, so much, as the grouping and what
this tells us. Set A can be rewritten as {N, ∆, !∆, !N}, which stands for the
paths between Dimensions 0, 2, 3 and 1 respectively. To understand what I
mean by this, look at our Quaternion logic gates: ^U and !VD.

Fig 18: Set B = {!^, !^U, !VD, !V}

If we multiply these terms by ¬∆ (or Imaginary rule set) we get (!VD)
¬∆ (!^U) = ∆ (our Real number logic). This shows the path by which
Quaternions collapse down into the rule set of both the Imaginary and Real
numbered spaces of dimensions 2-3. We can then continue this process, in the
usual manner, multiplying (∆) !∆ (!∆) and (∆) ∆ (!∆) to get the dimensions
beneath them:

(∆) !∆ (!∆) = N
(∆) ∆ (!∆) = !N

Leading us to conclude that N and !N refer to dimensions 0 and 1,
respectively. In this sense, the Real Numbers and Imaginary Numbers live in
Set A, along with dimensions 1 and 0. Whereas the Quaternions live jointly in
Set B and C, along with some other more traditional logic gates. The
Octonions, Sedenions, and (potentially) other higher dimensional spaces exist
scattered among the other sets, although this is something I have to investigate
further.

While this way of thinking about logic gates could provide a method
for travelling from one rule set (i.e. dimensional space) to the other, it should
not be taken too literally. In one sense, applying the ∆ or !∆ rule set to the

Quaternions does not lead to ∆ or !∆, but rather to hybrid spaces; the Real
Quaternions and the Imaginary Quaternions, and neither of these two systems
cancel out to Dimension 0 when summed in ∆. More on this in up-coming
research.

Fig 19: Set C = {V, VD, ^U, ^}

Based on the arrangements of the graphs in Fig 17, we can see that it
starts in the lower lefthand corner and proceeds in a zigzag fashion to the
upper-right. The graphs in Fig 18 go in the reverse direction and the pattern is
repeated in the next two graphs in Fig 19 & 20.

Fig 20: Set D= {!R, !L, L, R}

Using the pattern of Fig 17 as the ‘base arrangement’, we can then
arrange Fig 17, 18, 19 & 20 into a single graph (Fig. 21). But there are 16!
possible arrangements.[4] How do we know we have the right one?

Fig 21: Preliminary grouping of sets.

We don’t. But we can deduce from a lack of connectivity between the
different regions that a more accurate arrangement is possible. We shouldn’t
expect to see such harsh delineating lines from such inter-related sets. Earlier
it was stated that the Quaternions and the Imaginary Quaternions follow the
rules laid out in Set B, while the Real Quaternions are sitting in Set C. This
can’t be right. If we move the Real Quaternions into Set B with the other
Quaternions, this forces all of the more commonly known logic gates: ^, !^, V
and !V together, which is much neater.

Fig 21: Final grouping.

Now, we see a much greater connectivity between different regions. At
this point, we are basically making pretty pictures without much substantive

Fig 22: A more tiled version of Fig. 21.

conclusions. However, I think it was worthwhile to explore this line of inquiry,
as it served as a useful vehicle to explain some of the relationships between
the Reals, Imaginary, Quaternions and Logic Gates.

Set Theory Arithmetic

Since we have already shown that is possible (in principle, at least) to
divide and multiply set operators together, I’m wondering if it is possible to
apply these kinds of operations to the actual sets of Set Theory. Unlike
traditional methods of arithmetic with sets e.g. dividing the elements of one set

into another, here we will be dividing the operators acting on the sets. Why
would anyone want to do this, you might ask?

It is a good question and one that I can only speculate on.
Using DGO methods on Set Theory will open up new ways to get from

one partition of a group of sets to another, and will lead to operations which
were not previously possible under the former laws of the Boolean Algebra.

Why should this be so?
Doesn’t the current operators cover all aspects and combinations of Set

Theory? The answer to this is: Yes, it does. But, if we recall that the !VD
operator governs the arithmetic of the quaternions, then this opens up the
possibility of doing Set Theory in higher order dimensions.

Why would we need to do this?
That is not so clear. We might find that quaternions are indispensable

for describing some aspect of Quantum Mechanics (see my various up-coming

papers, keywords: ‘Quaternions’, ‘Quarks’ and ‘Polyhedra’ for more on that),
in which case describing sets of these particles via the rules of the 4-
dimensional space in which they live might be desirable. Alternatively, 4D Set
Theory might find application in the weird and wonderful of Quantum
Computing, where a bit can be a ‘1’ and ‘0’ at the same time.

Let’s begin with a simple example. We will define our sets; A and B:

(A ∆ B) ^ (A !L B) = (A ^U B)

This operation would correspond with the following Venn Diagrams:

 =

A slightly more complex operation would be the following:

(A R B) ∆ (A !∆ B) / (!VD)!∆ = (A !V B)

 =

An important aspect of the above two equations is that both of them
feature non-commutative logic gates, specifically: !L, R and !VD. This means
that different outcomes for the equation would be expected depending on
which set we choose to be on the right and which appears on the left.

Since sets have no particular orientation in space and since either one
can be on the ‘left’ or on the ‘right’, this poses something of a problem,
especially as we move into higher-dimensions. Or at least it would, if we were
expecting to form a closed space algebra from it, but as we shall see in the
follow-up preprints and research papers, creating closed field algebras might
not always be the best approach…

Conclusion

Dimensional Logic Gate Operators have the potential for some very
weird applications. I would reiterate Wildberger’s proposal that they could find
application in computer circuitry, set theory and Bool algebra, and add to it
Quantum Computing, 4-dimensional (and higher) Set Theory and Set Theory
Arithmetic.

Citations and Footnotes

[1] www.researchgate.net/publication/
346527686_REIMAGINING_COMPLEX_NUMBERS
[2] Implication and 16 logical operations | Math Foundations 258 | N J
Wildberger: https://www.youtube.com/watch?v=XkqmuUg_yFs (Wildberger’s
video is dated December 22 2018.)
[3] Wildberger does not appear too concerned with this, as he is evidently
more taken by the use of ‘Bool Algebra’ rather than ‘Boolean Algebra’, which
is “more practical for sets with multiple components”. [2]
[4] That is 20,922,789,888,000 possible permutations.  

http://www.researchgate.net/publication/346527686_REIMAGINING_COMPLEX_NUMBERS
http://www.researchgate.net/publication/346527686_REIMAGINING_COMPLEX_NUMBERS
https://www.youtube.com/watch?v=XkqmuUg_yFs

Appendix

N !V !VD !R

^U !L ∆ !^

^ !∆ L !^U

R VD V !N

The colour-coding here pertains to the different sets: A = Red, B = Green, C = Blue, and D =
Yellow. The Quaternions are created from !VD and ^U and the Real Quaternions are created

from !^U and VD.

0 0 0

0 1 0

1 0 0

1 1 0

0 0 1

0 1 0

1 0 0

1 1 0

0 0 0

0 1 1

1 0 0

1 1 0

0 0 1

0 1 1

1 0 0

1 1 0

0 0 0

0 1 0

1 0 1

1 1 0

0 0 1

0 1 0

1 0 1

1 1 0

0 0 0

0 1 1

1 0 1

1 1 0

0 0 1

0 1 1

1 0 1

1 1 0

0 0 0

0 1 0

1 0 0

1 1 1

0 0 1

0 1 0

1 0 0

1 1 1

0 0 0

0 1 1

1 0 0

1 1 1

0 0 1

0 1 1

1 0 0

1 1 1

0 0 0

0 1 0

1 0 1

1 1 1

0 0 1

0 1 0

1 0 1

1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

0 0 1

0 1 1

1 0 1

1 1 1

