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Abstract

A new method for Logic Gate Arithmetic is proposed allowing sets to 
be added, subtracted, multiplied, and divided in an entirely new way leading to 
an alternate and expanded appreciation of Set Theory. 11 new Logic Operators 
are derived from the known Logic Operators:  AND, OR, NOR, XOR, and 
XNOR  and  their  relationships  are  described  extensively.  Utilising  the 
principles  of  Dimensional  Gate  Operators  (DGO),  the  new  operators  are 
shown to be directly related to dimensionality, both higher and lower, and the 
relationship to the Quaternions is given a fledgling treatment.

Background & Terminology

Logic Operators are an important part of modern Computer Systems 
and Set Theory. There are six primary Logic Gate Operators; AND, OR, NOR, 
XOR, XNOR and NOT, as they are traditionally perceived. More accurately, 
we could say that  there  are  only 3  (AND, OR, and XOR),  with  the NOT 
operator being more of a decorator acting on these to create the other 2 (anti-
operators), for a total of 5 in total.

In  ‘REIMAGINING  COMPLEX  NUMBERS’[1],  I  explored  the 
possibility that these Logic Operators were incomplete and added 11 more — 
for  a  total  of  16.  Shortly  after  writing  this,  I  watched  a  video  by  N  J 
Wildberger called “Implication and 16 logical operations” and realised that he 
had arrived at the same conception nearly a full two years, before I had.[2] 
Wildberger derives his new set of logic operations in a formal algebraic sense  
using Bool Algebra and goes on to name some of them in relation to the Stoic 
Logic of Modus Ponens i.e. implications and others in relation to their own 
internal properties.



For example, the Logic or Truth table that corresponds to the binary 
number ‘0000’ (read right to left), he denotes as ‘0’ or ‘zero’. It’s counterpart 
‘1111’ is  therefore  ‘1’.  ‘IMP’ stands  for  implication  and  OT1  stands  for 
‘Original Term’.

Tables 1: Wildberger’s 16 Logic Operations

Once a naming convention is in place, it doesn’t really matter how it 
got there. However, these new logic operators lack Boolean Algebra symbols, 
like ‘^’, ‘V’, ‘∆’ and ‘!∆’.[3][2] To counteract this, I will propose my own 
naming convention. I developed this method, before realising that Wildberger 
had already given names to all of the logic operations — I must have skipped 
over that section of the video.

In  any  case,  I’m  not  too  concerned  with  the  prospect  of  different 
naming conventions, this earlier on in my research. After all, the XOR and 
XNOR  logic  gates  are  sometimes  called  EOR  and  ENOR,  without  much 
complication, and there are numerous variations used for symbols throughout 
the literature, including ‘!’ and ‘¬’ for NOT etc.

More  confusingly,  however,  is  applying  the  binary  numbers  to  the 
Truth Tables. Binary numbers are usually written horizontally, whereas Truth 
Tables  are  nearly  always  vertical  (See  the  Appendix).  When  compiling 
Wildberger’s  operations  into  Tables  1,  it  seemed  necessary  to  list  the 
operators, as though their binary numbers are being read from ‘right to left’. 
To avoid headaches, I will continue with this convention.  And so, without 
further  ado,  I  will  layout  the  framework  for  how  I  derived  all  16  Logic 
Operators from the original six.

“Logic, dear Watson”

The binary numbers ‘0000’ to ‘1111’ can be used to represent all 16 of 
the Dimensional  Gate  Operators.  However,  some of  these operations  don’t 

0 NOR NIMP2 NOT2 NIMP1 NOT1 XOR NAND

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

AND XNOR OT1 IMP1 OT2 IMP2 OR 1

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’



appear all that logical. To alleviate this concern, I decided to attempt to derive 
the other eleven operators from the original five.

Table 2: “A rose by any other name?”

The first step was to combine the known logic gates; AND, OR, XOR, 
NAND, XNOR and NOR to see if we could create any knew terms. We can 
get to XOR, by adding AND and OR together, using the OR operator:

((^) V (V)) = ∆

But  this  is  obvious  and  doesn’t  lead  us  out  of  the  loop  into  the 
unknown parts of the DGO. Similarly with ((^) ^ (V))  = ^. It is easy to see 
how this method will lead us in circles.

Taking  a  step  back  and  reexamining  the  Truth  Tables  for  these 
operations, I realised that there were two more ‘binary’ numbers staring me in 
the face: ‘1010’ and ‘1100’.  These are equivalent to Wildberger’s OT1 and 
OT2. However, I identified them as RIGHT (or ‘R’) and LEFT (L), as in Right 
and Left Multiplication. Applying the NOR operator, !R (NOT RIGHT) and !L 
(NOT LEFT) are easily obtained.

From here, we can get to a new Logic Operator; ‘0100’, which is made 
from the combination of ∆ and !L:

((∆) ^ (!L)) = 0100

I’ve called 0100 ‘^U’ (meaning AND UP), because it is similar to 
‘^’ (1000) shifted ‘up’ one space. The NOT version of this gate is 1011 giving 
us; ‘!^U’ (NOT AND UP). Similarly, !V shifted down one space gives us 
0010, so this is ‘!VD’ (NOR DOWN).

Therefore, ‘!VD’ is equal to 1101.
Together with the NOT versions of these two new Logic Operations, 

we are able to fill 14 of the 16 arrangements in Table 2.  

? NOR ? ? ? ? XOR NAND

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

AND XNOR ? ? ? ? OR ?

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’



Table 3: All 16 operations with their names and symbols

Somewhere along the line, ‘0000’ and ‘1111’ were named: i.e. “N” and 
“!N” respectively (standing for “NONE” and “NOT NONE”).

These could equally be written as “NOT ALL” (NA) and “ALL” (A). 
Both ‘None’ and ‘A’ are already symbols in Boolean Algebra, so “NONE” (N) 
and “NOT NONE” (!N) are used instead.

Getting to ‘N’ and ‘!N’ from any of these gates is a simple matter. All 
you have to do is apply one gate together with its NOT version:

((V) ∆ (!V)) = N

The reverse is given by:

((!V) ∆ (!V)) = !N

Now  that  we  have  all  16  Dimensional  Gate  Operators  and  their 
Boolean Algebra symbols in place, we can explore the relationships between 
these and even write them in terms of one another. For example, all of these 
statements are TRUE:

((R) ∆ (L)) = ∆ ((!N) !∆ (L)) = !L (!VD) !∆ (L) = !^
((∆) ^ (!L)) = ^U

This means that the last equation in this list can equally be written as:

((R) ∆ (L)) (!(!VD) !∆ !(L)) ((!N) !∆ (L)) = ^U

This is a lot to take in and remember at first glance, so I’ve decided to organise 
all this information in the following tables:  

N !V !VD !R ^U !L ∆ !^

‘0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’

^ !∆ L !^U R VD V !N

‘1000’ ‘1001’ ‘1010’ ‘1011’ ‘1100’ ‘1101’ ‘1110’ ‘1111’



Fig 0, 1 & 2  



Fig 3, 4 & 5



Fig 6, 7 & 8



Fig 9, 10 & 11



Fig 12, 13 & 14  



Fig 15

We have already shown that we can do the basic rules of arithmetic 
with these gates (like bringing terms across the equals sign), so we should be 
able  to  do  more  complicated  affairs,  like  addition,  subtraction  and/or 
multiplication and division.  For example,  we can try to rewrite R ∆   L to 
produce ( !^ ));

R ∆  L = ∆
( R ) ∆  ( ∆ ) = (( VD ) ∆ ( !^ ))

( R ) ∆  ( ∆ ) / (( VD ) ∆ ) = ( !^ )

Another more convoluted example, this time rewriting ((∆) ^ (!L)) for (VD):

(∆) ^ (!L) = ^U
((∆) ^ (^U)) V ((∆) V (^U)) = ^U

!(((∆) ^ (^U)) V ((∆) V (^U))) = !^U
(!∆)^(!^U) V (!∆)V(!^U)/(!∆) ^ = VD

Later on, we will apply these simple methods to Set Theory, as a whole.

Some Notable Gates

In previous research papers we have come across Dimensional Gate 
Operators  like  ∆  (XOR),  which  represents  the  rules  of  Real  Number 
Arithmetic  and  !∆  (XNOR),  which  represents  the  rules  of  Complex 
Arithmetic. This shift in how we do arithmetic allows us to go from the 1-2 



dimensional lines of the Real Numbers and into the 2-3 dimensional realm of 
the ‘Complex Plane’.

Unlike,  the  numbers  of  the  Complex  Plane,  however,  there  are  no 
algebraic numbers here. This is because the √-1 (or i) is equal to ±1 in !∆. 
Therefore, they are simply ordinary numbers with a different arithmetic rule 
set.  You might be tempted to think — as I did — that ∆ also governs the rules 
of the Quaternions and Octonions. But this is not the case.
Unlike, the numbers of the Complex Plane, however, there are no algebraic 
numbers here. This is because the √-1 (or i) is equal to ±1 in !∆. Therefore, 
they are simply ordinary numbers with a different arithmetic rule set.  You 
might be tempted to think — as I did — that ∆ also governs the rules of the 
Quaternions and Octonions. But this is not the case.

One  important  feature  of  the  Quaternions  is  that  they  are  non-
commutative; that is A(B) =/= B(A).

Where do we see this feature in the DGO?
We see it in places like !VD, !R, !^U, and VD, where A(-B) =/= B(-A). 

Quaternions are governed by a mix of !VD and ^U logic, because they are 
non-commutative for different valued quaternions, whilst retaining the !∆ rule 
set of the imaginary numbers, when values i, j, k are the same:

i2 = j2 = k2 = -1

ij = k, ji= -k
jk = i, kj = -i
ki = j, ik = -j

Left to Right: ∆, ^U, and !VD 

The  Quaternions  are  made  from two groups  of  !VD and one  of  ^U.  This 
asymmetry  allows  for  the  loop  to  be  closed  and  also  explains  why  these 
higher-dimensional algebras can only be  order 2n.
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Dimensional Spaces

Let’s return to Fig 0-15. What do you notice about these 16 graphs? 
Other than how great they all look… That’s right. It is clear that some of them 
fit together like jigsaw pieces. For instance, it is clear that Fig 1, 2, 4, & 8 form 
a ‘Set B’. Similarly, we can make ‘Set C’ from the figures 7, 11, 13 and 14.

The horizontal and vertical lines appear to make another set, so we will 
call that ‘Set D’. That just leaves the final four graphs; {0, 6, 9, 15} or ‘Set A’.

There is a distinct pattern emerging in how these sets are dispersed 
across the entire binary number line, here represented in their decimal form:

Fig 16: All four sets; A, B, C, & D. This pattern explains the frequency of the NOT values, as 
they are represented in the DGO.

The first composite graph (Fig 17), shows the domains of N (in the 
bottom lefthand corner), ∆ immediately above that, !∆ in the lower righthand 
corner and !N in the top right.

Fig 17: A = {N, ∆, !∆, !N}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



What matters here is not the order, so much, as the grouping and what 
this tells us. Set A can be rewritten as {N, ∆, !∆, !N}, which stands for the 
paths between Dimensions 0, 2, 3 and 1 respectively. To understand what I 
mean by this, look at our Quaternion logic gates: ^U and !VD. 

Fig 18: Set B = {!^, !^U, !VD, !V}

If we multiply these terms by ¬∆ (or Imaginary rule set) we get (!VD) 
¬∆  (!^U)  =  ∆  (our  Real  number  logic).  This  shows  the  path  by  which 
Quaternions collapse down into the rule set of both the Imaginary and Real 
numbered spaces of dimensions 2-3. We can then continue this process, in the 
usual manner, multiplying (∆) !∆ (!∆) and (∆) ∆ (!∆) to get the dimensions 
beneath them:

(∆) !∆  (!∆) = N
(∆) ∆  (!∆) = !N

Leading us to conclude that N and !N refer to dimensions 0 and 1, 
respectively. In this sense, the Real Numbers and Imaginary Numbers live in 
Set A, along with dimensions 1 and 0. Whereas the Quaternions live jointly in 
Set  B  and  C,  along  with  some  other  more  traditional  logic  gates.  The 
Octonions, Sedenions, and (potentially) other higher dimensional spaces exist 
scattered among the other sets, although this is something I have to investigate 
further.

While this way of thinking about logic gates could provide a method 
for travelling from one rule set (i.e. dimensional space) to the other, it should 
not be taken too literally. In one sense, applying the ∆ or !∆ rule set to the 



Quaternions does not lead to ∆ or !∆, but rather to hybrid spaces; the Real 
Quaternions and the Imaginary Quaternions, and neither of these two systems 
cancel out to Dimension 0 when summed in ∆. More on this in up-coming 
research.

Fig 19: Set C = {V, VD, ^U, ^}

Based on the arrangements of the graphs in Fig 17, we can see that it 
starts  in the lower lefthand corner and proceeds in a zigzag fashion to the 
upper-right. The graphs in Fig 18 go in the reverse direction and the pattern is 
repeated in the next two graphs in Fig 19 & 20.

Fig 20: Set D= {!R, !L, L, R}

Using the pattern of Fig 17 as the ‘base arrangement’,  we can then 
arrange Fig 17, 18, 19 & 20 into a single graph (Fig. 21). But there are 16! 
possible arrangements.[4] How do we know we have the right one?



Fig 21: Preliminary grouping of sets.

We don’t. But we can deduce from a lack of connectivity between the 
different regions that a more accurate arrangement is possible. We shouldn’t 
expect to see such harsh delineating lines from such inter-related sets. Earlier 
it was stated that the Quaternions and the Imaginary Quaternions follow the 
rules laid out in Set B, while the Real Quaternions are sitting in Set C. This 
can’t  be right.  If  we move the Real Quaternions into Set B with the other 
Quaternions, this forces all of the more commonly known logic gates: ^, !^, V 
and !V together, which is much neater.

Fig 21: Final grouping.

Now, we see a much greater connectivity between different regions. At 
this point, we are basically making pretty pictures without much substantive 



Fig 22: A more tiled version of Fig. 21.

conclusions. However, I think it was worthwhile to explore this line of inquiry, 
as it served as a useful vehicle to explain some of the relationships between 
the Reals, Imaginary, Quaternions and Logic Gates.

Set Theory Arithmetic

Since we have already shown that is possible (in principle, at least) to 
divide and multiply set operators together, I’m wondering if it is possible to 
apply  these  kinds  of  operations  to  the  actual  sets  of  Set  Theory.  Unlike 
traditional methods of arithmetic with sets e.g. dividing the elements of one set 

into another, here we will be dividing the operators acting on the sets. Why 
would anyone want to do this, you might ask?

It is a good question and one that I can only speculate on.
Using DGO methods on Set Theory will open up new ways to get from 

one partition of a group of sets to another, and will lead to operations which 
were not previously possible under the former laws of the Boolean Algebra. 

Why should this be so?
Doesn’t the current operators cover all aspects and combinations of Set 

Theory? The answer to this is:  Yes, it  does.  But,  if  we recall  that the !VD 
operator  governs  the  arithmetic  of  the  quaternions,  then  this  opens  up  the 
possibility of doing Set Theory in higher order dimensions.

Why would we need to do this?
That is not so clear. We might find that quaternions are indispensable 

for describing some aspect of Quantum Mechanics (see my various up-coming 



papers, keywords: ‘Quaternions’, ‘Quarks’ and ‘Polyhedra’ for more on that), 
in  which  case  describing  sets  of  these  particles  via  the  rules  of  the  4-
dimensional space in which they live might be desirable. Alternatively, 4D Set 
Theory  might  find  application  in  the  weird  and  wonderful  of  Quantum 
Computing, where a bit can be a ‘1’ and ‘0’ at the same time.

Let’s begin with a simple example. We will define our sets; A and B:

(A ∆ B) ^ (A !L B) = (A ^U B)

This operation would correspond with the following Venn Diagrams:

       =

A slightly more complex operation would be the following:

(A R B) ∆ (A !∆ B) / (!VD)!∆  =  (A !V B)

   =

An important aspect of the above two equations is that both of them 
feature non-commutative logic gates, specifically: !L, R and !VD. This means 
that  different  outcomes  for  the  equation  would  be  expected  depending  on 
which set we choose to be on the right and which appears on the left.

Since sets have no particular orientation in space and since either one 
can  be  on  the  ‘left’ or  on  the  ‘right’,  this  poses  something  of  a  problem, 
especially as we move into higher-dimensions. Or at least it would, if we were 
expecting to form a closed space algebra from it, but as we shall see in the 
follow-up preprints and research papers, creating closed field algebras might 
not always be the best approach…



Conclusion

Dimensional Logic Gate Operators have the potential for some very 
weird applications. I would reiterate Wildberger’s proposal that they could find 
application in computer circuitry, set theory and Bool algebra, and add to it 
Quantum Computing, 4-dimensional (and higher) Set Theory and Set Theory 
Arithmetic.
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Appendix

N !V !VD !R 

^U !L ∆ !^ 

^ !∆ L !^U 

R VD V !N 

The colour-coding here pertains to the different sets: A = Red, B = Green, C = Blue, and D = 
Yellow. The Quaternions are created from !VD and ^U and the Real Quaternions are created 

from !^U and VD.

0 0 0

0 1 0

1 0 0

1 1 0

0 0 1

0 1 0

1 0 0

1 1 0

0 0 0

0 1 1

1 0 0

1 1 0

0 0 1

0 1 1

1 0 0

1 1 0

0 0 0

0 1 0

1 0 1

1 1 0

0 0 1

0 1 0

1 0 1

1 1 0

0 0 0

0 1 1

1 0 1

1 1 0

0 0 1

0 1 1

1 0 1

1 1 0

0 0 0

0 1 0

1 0 0

1 1 1

0 0 1

0 1 0

1 0 0

1 1 1

0 0 0

0 1 1

1 0 0

1 1 1

0 0 1

0 1 1

1 0 0

1 1 1

0 0 0

0 1 0

1 0 1

1 1 1

0 0 1

0 1 0

1 0 1

1 1 1

0 0 0

0 1 1

1 0 1

1 1 1

0 0 1

0 1 1

1 0 1

1 1 1


