
Fina
l p

ag
e p

roo
fs

Canadian Journal of Pure and Applied Sciences !
Vol. 15, No. 2, pp. 0000-0000, June 2021!
Online ISSN: 1920-3853; Print ISSN: 1715-9997

Available online at www.cjpas.net

REIMAGINING COMPLEX NUMBERS

Christopher C. O’Neill
Address: Cataphysics Group

ABSTRACT

This work starts by examining the square root problem, i.e. (–1)1/2. By looking for practical solutions to this problem, it
arrives at a new mathematical space, where imaginary numbers can be reinterpreted free from their algebraic context and
therefore from an entirely different perspective. This new mathematical space is based on XNOR logic gates and deals
strictly with operators. Further permutations of this method lead to a total of 16-dimensional gate operator spaces, which
may have some application to Quantum Mechanics.

Keywords: Quaternions, Octonions, Sedenions, Complex Plane, mathematical operators, quadratic equation, Logic Gate
Algebra.

INTRODUCTION TO THE OCTONIONS

Imaginary numbers are invaluable in many areas of math-
ematics, physics, and, in particular, quantum mechanics
(Karam, 2020), see also in (“Hermitian Operators and
their Applications” by AS. Hicks) and (“Quantum physics
needs complex numbers” by Marc-Olivier Renou et al.,
arXiv:2101.10873v1). They allow us to extend our under-
standing of the real numbers into the abstract realm of the
Complex Plane. Complex numbers are in the form of (a +
bi), where ‘a’ and ‘b’ are real numbers (like 1, 2, 3…) and
‘i’ is the square root of –1. The Complex Plane can be
further extended into the 4-dimensional realm of the
Quaternions, Octonions, and Sedenions, etc. In 1843, the
famous Irish mathematician and physicist William Rowan
Hamilton extended the complex numbers into the 4-di-
mensional realm of the Quaternions (Hamilton, 2000).
Shortly thereafter, Hamilton’s friend John T. Graves dis-
covered the Octonions.

Since then, a 16-dimensional hypercomplex, known as the
Sedenions has been discovered. But with each successive
extension of the Reals into the imaginary realms, some
functionality has been lost. The Real numbers are very
good at describing and modelling the world. This is be-
cause they are ordered, commutative, and associative.
When we move to the Complex Plane, the numbers are no
longer ordered. This is because the value of (–1)1/2 is not a
known value. When we reach the Quaternions, we lose
the property of commutation. And the situation gets worse
as we go to the Octonions where the property of associa-
tivity is lost. Now, a×(b×c) no longer equals to (a×b)×c.
This makes it difficult to do actual calculations in these

mathematical realms. By the time, we get to the Sede-
nions all hell breaks loose and nontrivial division by zero
is allowed. Perhaps that is why John Baez asked; ’If octo-
nions are the crazy uncle that no one lets out of the attic,
would sedenions be the serial killer maximum-security
prison escapee that no one even lets in the
h o u s e ? ’ (h t t p s : / / e n . w i k i p e d i a . o r g / w i k i /
Talk%3ASedenion).

Nowadays, scientists, mathematicians, and physicists like
to think of complex numbers as variables over finite fields
(Campello de Souza et al., 2002). This produces another
layer of abstraction which can used to model electrical
fields and has a great deal of application in String Theory
(Moosavian and Pius, 2019). But how does an increase in
abstraction help us clear up the confusion surrounding an
already abstracted problem? It doesn’t. Therefore, the
author proposes going the other way, and stripping the
imaginary of the abstract to revealing the true form it has
been hiding from us, all along.

Real or Imaginary?
When (–1)1/2 was first encountered in quadratic equations,
its usefulness wasn’t considered outside of how it could
be used for equations to resolve them (https://
en.wikipedia.org/wiki/Cubic_equation). The 16th Century
Italian poly-mathematician Gerolamo Cardano was the
first to take notice of it. But it wasn’t until Rafael
Bombelli, ‘the father of complex numbers’ that the prob-
lem was really understood and their potential truly known
(https://en.wikipedia.org/wiki/Rafael_Bombelli).

Corresponding author e-mail: chris.ozneill@gmail.com

https://en.wikipedia.org/wiki/Talk%2525253ASedenion
https://en.wikipedia.org/wiki/Talk%2525253ASedenion
https://en.wikipedia.org/wiki/Talk%2525253ASedenion
https://en.wikipedia.org/wiki/Rafael_Bombelli

Fina
l p

ag
e p

roo
fs

 2
Canadian Journal of Pure and Applied Sciences

The problem can be stated as x2 = –1. We have to solve
for x. If we substitute +1 for x we get +1, so that can’t be
right. If we use –1, we still get plus one. So that can’t be
right either. In fact, no matter what number we use, we
will never get x2 = –1.

One way to get around this problem is to rewrite x as i
and set it as a ‘complex number’ (a + bi). Then, we multi-
ply the complex number (a + bi) by its conjugate (a – bi)
to obtain the absolute value of any number in the complex
plane. This result is possible because squaring of (–1)1/2
gives –1.

But is there another solution to this problem? Perhaps a
solution that doesn’t persist in giving more and more ab-
stract interpretations? In order to find this solution, we
need to examine how operators work. What does the au-
thor mean by operators in this context?

In the mathematical language, operators are those like {+,
–, ×, ÷}. When we multiply a positive number by a posi-
tive number, we get a positive real number. When we
multiply a negative by a positive, we get a negative and
when we multiply a negative by a negative, we get a posi-
tive number. It is the first and last rules that prevent us
from solving the problem of (–1)1/2. So, what do we do?
We change the order of the operators and how they work.

There are many ways to do this. The current arrangement
of our operators is isomorphic with the XOR logic rule
set, also known as ‘exclusive or’ that is shown in Figure
1.

Fig. 1. The XOR logic rule set.

As the reader can see in Figure 1, the 0s and 1s of the
XOR exactly match the ‘+’ and ‘–’ of our operators. And
this works equally well for the divisors. Why is our math-
ematics based on the XOR system, the reader might ask?
Why not on some other more familiar logic system, like
OR, AND, NOR, or NAND? It seems sort of arbitrary,
doesn’t it?

While there are good logical reasons for why a minus
multiplied by a minus equals to a plus, it would appear
that in the case of (–1)1/2 and the Complex Plane, this
property no longer holds true (Marks-Tarlow et al., 2015).
A very similar idea was put forward by Martin A. Hays,
who has conceived of six different number systems using
+0, –0 and the shape of the Necker Cube to generate a

new mathematical system. (‘Real and Imaginary Num-
bers’, available online: http://chiralkine.com/real-and-
imaginary-numbers/).

If we examine the logic chain for XOR, which is 0110, we
see that this is the binary number, which is itself equal to
6 (or 7 depending on how one counts them.) Since there
are 16 variations on a four-bit binary number, it is con-
ceivable that we have 16 variations of our number bit
operators and it is certain that our new set of operators are
to be found there. In fact, N. J. Wildberger posits the same
idea in his video the “Implication and 16 logical opera-
tions” (https://www.youtube.com/watch?v=Xkqmu-
Ug_yFs). For an alternative perspective on this, see also
the work by the author (C. O’Neill, “Logic Gate Arith-
met ic and Quatern ions” DOI: 10 .13140/RG.
2.2.10320.12809).

Notice how the 16 logical operations correspond to the
16-dimensions of the Sedenion Numbers. But unlike, the
n-dimensional division algebras of the imaginary num-
bers, these systems will be both well-behaved (ordered),
commutative, and associative. Furthermore, they will
permit extensions into odd and singly-even dimensions. In
this sense, 5, 6, and even seven-dimensional algebra will
be possible in a manner that will be relatively simple and
easy for anyone to understand. But before we do that, we
must choose our operator set. So, what is the best choice?
Obviously one where positive square numbers and nega-
tive square numbers equal to negative numbers. XNOR
will easily achieve that is shown in Figure 2.

Fig. 2. The XNOR logic rule set.

With this set of operators, we can now easily prove (–1)1/2
to be equal either to +1 or –1. Our next step is to privilege
this result; meaning that from now on all of our mathe-
matics will be done in the XNOR (!∆) operator set. From
here on out, all of our calculations will take place using
the XNOR ruleset. We have already determined what the
rules for multiplication and division, but in order to carry
out even the most basic of calculations, we need to know
the rules of addition and subtraction as well.

Basic Arithmetic
How does our new XNOR rule set deal with something
simple like (a + b = c)? The answer is more difficult than
we would at first imagine. Let’s take a look at the rules
for addition in XOR:

A + (+B) = A + B

http://chiralkine.com/real-and-imaginary-numbers/
http://chiralkine.com/real-and-imaginary-numbers/
https://www.youtube.com/watch?v=XkqmuUg_yFs
https://www.youtube.com/watch?v=XkqmuUg_yFs

Fina
l p

ag
e p

roo
fs

 3
Christopher C. O’Neill

A + (–B) = A – B
A – (+B) = A – B
A – (–B) = A + B

As we can see, these are identical to the multiplication
rules of XOR. Now let’s look the same rules in XNOR:

A + (+B) = A – B
A + (–B) = A + B
A – (+B) = A + B
A – (–B) = A – B

They are just the opposite. In light of this, we can do
arithmetic at all stages across the divide of the XNOR and
XOR dimensional axes or gateways. But how does this
work with some simple real-world examples? If we have
the sum 4 + 6 = 10 (in XOR) and we exchange the opera-
tors, we get:

4 + (+6) = +10
4 + (–6) = –2
–4 – (+6) = –10
4 – (–6) = +10
–4 – (–6) = +2

In XNOR, we get the complete inverse:

4 + (+6) = –2
4 + (–6) = +10
–4 – (+6) = +2
4 – (–6) = –2
–4 – (–6) = –10

Now that we have our new rule set of arithmetic we can
apply it to more complex examples. When we do this, we
inevitably find the somewhat perplexing value of (+1)1/2,
which can’t be solved with our current operators. Our new
XNOR equation for the quadratic formula looks like this:

Using this to solve the equation 2x2 + 4x + 20 = 0 will
require us to use the ruleset for basic arithmetic seen in
the last table. This results in part of the expression being
(–16–160)1/2, which based on above ruleset is (144)1/2.
However, this can be confusing. Therefore, we can multi-
ply by –1, which is the method employed in the computer
programs in the Appendices

which is equal to 1 – 3i or 1 + 3i. In XOR, we know that i
= ±1 and so our answer becomes –2 or 4. Now, we have a
complete and ordered set of operators for the complex
plane and we can do algebra with it. We will call this al-
gebra, Logic Gate Algebra.

Imaginary Numbers are Real
In a very popular video by Welch Labs, entitled ‘Imagi-
nary Numbers Are Real [Part 1: Introduction]’ (https://
www.youtube.com/watch?v=T647CGsuOVU), there is a
demonstration of the concept of imaginary numbers and
how they can be used to find the roots of quadratic equa-

tions, which otherwise don’t appear to have any roots.
Fig. 3. This graph showing the polynomial roots of x2 + 1
generated on the online graphing application Geogebra
(https://www.geogebra.org/m/U2HRUfDr).

An example of what is being described in the video can
also be seen in Figure 3. Here we have a parabola x2 + 1
and we are interested in the roots of this function. Accord-
ing to the video, there are no roots to this function, as the
parabola does not cross the x-axis. However, according to
Gauss’s Fundamental Theorem of Algebra, any polynomi-
al of degree n must have n roots. When we look we see
that our equation has degree 2, therefore it has 2 polyno-
mial roots.

The solution can be once again found using the Quadratic
Formula. The answer can be partially seen in Figure 3.
There is a grey line (representing x2 + 1 and a red line,
which is the imaginary curve and can be see crossing the
x-axis at two points.

In the video, we are shown an interesting animation,
where the function is stretched into a 2nd dimension and
pulled down below the x-axis (See Figure 4). This shows
a kind of analytic continuation between the Real and

y =
b ± −b2 − 4(ac)

2a

y =
4 ± −16 − (160 × (− 1))

−4

y =
4 ± 144

−4

y =
4

−4
± 144

−4

https://www.geogebra.org/m/U2HRUfDr

Fina
l p

ag
e p

roo
fs

 4
Canadian Journal of Pure and Applied Sciences

imaginary part of the equation, like a map between the
two different functions. In some sense, then this new sur-
face is the true form of the equation x2 + 1, as it contains
the most information about the surface and where it con-
nects, too.

Fig. 4. The animation showing the complex roots of x2 +
1. Image credit: Welch Labs (https://www.youtube.com/
watch?v=T647CGsuOVU).

Fig. 5. The blue trace for x2 + 1 and the red trace for – x2 –
0.25.

The question is: Is it possible to create a function or a
program which actually generates this surface and can we
use the new XNOR ruleset to help us in doing so? If we
attempt to graph our original function x2 + 1 and the
imaginary roots of function (– x2 – 0.25), we get some-
thing not unlike Figure 5.

We need some way to extend these two surfaces so that
they interact with one another. As we known, x2 + 1 cre-
ates a parabola, which is itself the result of multiplying

two lines together. Therefore, we may be able to extend
these two parabolas by multiplying them together, in a
special way. The result of this simple process can be seen
in Figure 6 and the code which generated this image can
be found in Appendix G. The reader will note that it
looks nothing like what is presented in the animation in
Figure 4.

Instead, what we have is a kind of singularity, not unlike
the kind of 2-dimensional singularities used to model
black holes in a popular sense. Similar structures also
presented in (Teh, 2010). This would appear to reinforce
the connection between Riemannian Geometry and the
curvature of spacetime, since we have quickly arrived at a
model of a 2-dimensional blackhole, simply by muddling
around with functions and their imaginary counterparts.

Fig. 6. The result of the parabolas x2 + 1 and – x2 – 0.25
being multiplied together.

https://www.youtube.com/watch?v=T647CGsuOVU
https://www.youtube.com/watch?v=T647CGsuOVU

Fina
l p

ag
e p

roo
fs

 5
Christopher C. O’Neill

Fig. 7. An attempt to incorporate the XNOR ruleset into
the program (Appendix G).
The reader will notice that there is no mention of any of
the Logic Gate Algebra in this method. We can attempt to
implement a kind of Logic Gate Algebra (also demon-
strated in the code in Appendix G), but the methods and
the results are dubious, at best, and require refinement.

So how do we go about creating maps between the Real
numbers and the imaginary numbers, like the ones see in
the animation in Figure 4? The simplest and most obvious
route would be to simply transform one parabolic curve
by the other. But that is also not very interesting.

Undiscovered Regions
Quadratic equations are equations in the form ax2 + bx + c
= 0. This form holds true for both the Real numbered part
and the imaginary part, but we can’t always expect it to
hold true for all parts of our mapping and in fact, it will
likely only be the case at very specific places where the
like terms are being multiplied by one another. But before
we can do that, we need to look at some of the basics of
linear algebra in the Logic Gate Algebra system.

Suppose we want to plot the expression: 2(3 + i)(4 + i).
Under the original Complex Plane method this would lead
to:

2(3 + i)(4 + i) = 22 + 14i

Under the Logic Gate Algebra, our original expression
would be rendered in the form 2(!∆ + 3)(!∆ + 4); the
terms are reversed, because we have privileged the use
of !∆(XNOR) over ∆(XOR). The result of this is:

2(!∆ + 3)(!∆ + 4) = 22

This is much simpler and well ordered. But what is going
on here? When multiplying through the two different sys-
tems XNOR and XOR, we have to multiply the terms
twice, once in each system. This generates two equal re-
sults of opposite signs, which then cancel each other out.

2(!∆+3)(!∆+4)
2(–1 + (4–4) + (3–3) + 12)
2(–1+12) = 22

This is equivalent to multiplying FL instead of the full
mnemonic: FOIL, which stands for (First, Outer, Inner,
Last). But we can’t expect this to work with larger expres-
sions like (!∆ + 1)3 or (!∆ + 1)4 and so on. A more general
approach can be seen in Appendix C. Alternatively, they
can be placed into matrices where the values cancel out to
zero and the remainders are summed to give the answer. If
we were to simply graph 2(x + 3)(x + 4) on a normal
Cartesian graph, we would get the familiar quadratic
curve that is shown in Figure 8.

Plotting the same function in the three-dimensional form
(3D) with a plotting program gives similar but not so
amazing result shown in Figure 9. Graphing the same
function using XNOR and XOR on a 3-dimensional plane
however produces interesting and beautiful results shown
in Figures 10a and 10b.

Fig. 8. The quadratic equation 2(x + 3)(x + 4).

Fig. 9. The three dimensional form of 2(x + 3)(x + 4).

This result is much closer to the kind of map that we see
in Figure 4. But it does not appear to be exact and may be
skewed. If so, then this is most likely the result of the
double for loop needed to generate it. While the resulting
surface succeeds in plotting the map between the Real and
Imaginary functions, whatever this function is, it is defi-
nitely not the original function 2(x + 3)(x + 4). The author
has yet to devise a method of discovering what the new
function is [in the conventional sense] and how to trans-
late between the two in all cases. This will have to be left
until subsequent research, as the research in this paper
continues on.

2.4

1.6

0.8

 0

 –4.8 –4.0 –3.2 –2.4

Fina
l p

ag
e p

roo
fs

 6
Canadian Journal of Pure and Applied Sciences

Fig. 10. The more accurate 3-dimensional depiction (a)
and (b) of 2(x + 3)(x + 4).

Plotting domains
Now that we have our new rules for Logic Gate Algebra
or Order 2, so called because it deals with two coordi-
nates, we can begin plotting some functions. To start with,
the author plotted results of all functions for (x!∆ + y∆)
(x1∆ + y∆) over a finite field to produce the polynomial
distribution on the complex plane shown in Figure 11.

We can increase or decrease the range and increase the
step value to produce many such graphs. Interestingly,
they all exhibit the same properties at every scale, much
like how magnetic fields exhibit the same properties no
matter if they are produced by a single atom or a whole
storm of atoms nested in a magnetized block of metal.

Graphing a single function is more revealing. In this case
it is the function from earlier: 2(!∆+3)(!∆+4) that is
shown in Figure 12. With this much simpler plot it is easy
to see that what we are graphing here is simply the par-
abolic curve from earlier (see in Figures 13, 10a, and
10b). As we know, this is the general shape of polynomial

multiplication in the Logical Gate Space (LGS). But what
about polynomial division algebras?

Fig. 11. The complex plane: Polynomial distribution (a)
for the range {–5, 5} and (b) {–2, 2} step 20.

Fig. 12. The complex plane: Polynomial distribution, 2(!∆
+ 3)(!∆ + 4).

Fig. 13. The hyperbolic quadratic, 2(!∆ + 3)(!∆ + 4).

 (a)

 (b)

(a)

(b)

Fina
l p

ag
e p

roo
fs

 7
Christopher C. O’Neill

Fig. 14. The hyperbolic Division Quadratic (a), 2(!∆ + 3)/
(!∆ + 4), and the polynomial division (b).

Here we have (x!∆ + 3∆)/(y!∆ + 4∆), which produces this
unusual ‘saw-toothed’ graph shown in Figure 14. The
results for all functions of this kind, over a particular fi-
nite range can be plotted in 3D and reveal the same struc-
ture (see Appendix A for the code). This is interesting
and shows that these functions are somehow embedded in
themselves. The author has used a less opaque surface
here (Figure 14b) to make the resulting structure more
apparent.

The major difference between more general division func-
tions like these and the previous multiplication functions
is revealed when the range of the field is increased. These
functions appear to show repeat patterns extending out
across the plane, whereas the other one just stays in place
and increases to infinity. Below, we have one section of
the above function (a) and then an extended version (b)
shown in Figure 15. Figure 15a is embedded in the graph
of Figure 15b, although it helps to be able to rotate the
two graphs to compare the shapes to see exactly where it
is embedded. The other peaks and troughs hint that this
structure repeats outside the limits of the field, but exactly
how and in what way is not yet known, as it requires a
large amount of processing power to generate such
graphs.

Fig. 15. The embedded (a) and extended (b) graphs.

3-Dimensional cubic functions are enabled by (x + y)2,
which was unexpected because the function is squared
rather than cubed. The Plotly graphing library used to
generate this has a bug in it that glues some of the faces
together with unwanted polygons. The author has had to
angle this graph so they remain hidden. Unfortunately,
this may not be the best angle to view the cubic properties
from but it should give the reader some idea. Fortunately,
the code for this example is available in Appendix B. On
the plus side, there is a way of altering the parameter al-
phahull (this is equivalent to convex hull for coordinate
points) which when set to zero joins up all the faces of
this cubic function to reveal a cuboctahedron; an object
with 6 square and eight triangular faces.

The complex plane cubic equation is shown in Figure 16.
Graphing (x!∆ + 3)3 results in the hyperbolic cubic func-
tion shown in Figure 17. The alphahull = 0 of this graph
equals a nicely skewed octahedron. The author doesn’t
know if this means that there is a relationship between 3D
cubic functions and platonic solids, but it is interesting to

(a)

(b)

 (a)

 (b)

Fina
l p

ag
e p

roo
fs

 8
Canadian Journal of Pure and Applied Sciences

speculate about. Plotting (∆, !∆, ∆)2 gives the familiar
saddle graph shown in Figure 18.

Fig. 16. The complex plane cubic equation.

Fig. 17. The hyperbolic cubic function, (x!∆ + 3)3.

Fig. 18. The saddle graph.

For the most part, representations of the complex plane
are done in two-dimensional heat maps. But two extra real
space dimensions can always be added to these spaces
making them 4-dimensional in total.

It is impossible for the average human to visualize or
imagine the fourth dimension but there are ways and
means around this. For instance, we can plot three of our
values as real space coordinate values and allow the
fourth to be some kind of vector coordinate, denoting
direction or flow. This works quite well. Another method
is simply move each of the four-dimensions in and out of
the three real space dimensions at a time, giving one a
‘slice’ or a window into what the entire function might
actually look like. This is not very satisfactory but for us
mere 3-dimensional mortals, it is often the best that we
can do. Graphing the saddle plot from Figure 16 in the
vector coordinates gives the results shown in Figure 19.

Fig. 19. The saddle graph using XNOR vectors.

Complex Plane
How does the XNOR ruleset work on the Complex Plane?
For example, how does it deal with something like the
Riemann Zeta Function? The Riemann Zeta function con-
tains an infinite series of the following kind:

Re(z) = 1/1(a+bi) + 1/2(a+bi) + 1/3(a+bi) + 1/4(a+bi) + 1/5(a+bi)
…

where a and b are some Real numbered values and ‘i’ is
of course the imaginary number. Working out the first
three terms of the Riemann Zeta function results in

1/1(2+3i) + 1/2(2+3i) + 1/3(2+3i)
(∆1 +(– !∆1)) + 1/(4 + (–6)) + 1/(6 +(–9)

∆: 0 + 1/(–2) + 1/(–3)
!∆: 2 + (+1/10) + (+1/15)

Fina
l p

ag
e p

roo
fs

 9
Christopher C. O’Neill

∆: –0.5 + (–0.333333…)
! ∆: 2 – 0.1 – 0.0666666…

∆: –0.833333…
!∆: 1.833333…

∆: – 0.833333… + 1.833333… = 1
!∆: – 0.833333… + (+ 1.833333…) = 2.666666…

Therefore, the result in coordinates is (1, 2.666666). This
is another level of LGA and is fully stocked for all arith-
metic, not just multiplication and division. As such this
will be labelled LGA-1, whereas our previous system will
be labelled as LGA-2. Arithmetic in LGA-1 is admittedly
confusing. More work needs to be done on which opera-
tors pertain to XOR and which to XNOR and how they
interact, otherwise the calculations will result in inconsis-
tent results.

Other series that are useful to do real mathematics include
the Taylor Expansion for trigonometric functions for the
sine, cosine, and exponential functions. By applying the
same rules of arithmetic to these functions, as above, we
see that they equate to sin(x) = –y, cos(x) = y and the ex-
ponential function exp(x) = y – x.

16-Dimensional spaces
The LGA are arranged from ‘0000’ to ‘1111’ and ascribed
letters ‘A’ through ‘P’ as shown in Figure 20. Here 0 = ‘+’
and 1 = ‘–’. Notice that ‘G’ is equivalent to XOR, ‘J’ with
XNOR. There are other logic gates here, for example,
including; ‘I’, ‘B’, and ‘O’, which correspond to AND,
NOR, and NAND, respectively.

Fig. 20. The LGA arranged from ‘0000’ to ‘1111’ and
ascribed letters ‘A’ through ‘P’.

If we can think of these 16 systems as distinct rules for
addition in multi-dimensional space, then we notice some
interesting properties. For instance, no matter the operator
in ‘A’ the answer is always a positive. The opposite is true
for ‘P’. In many of these spaces, like ‘C’, ‘D’, ‘K’ and ‘L’,
a positive number by a negative number yields different
results depending on how they are multiplied together.
For instance:

3C × (–3C) = –9
–3C × 3C = 9

This means that they are non-commutative in this respect.
But in other respects, when the operators are the same, ‘C’
is commutative. Graphs similar to those seen in Figures
16, 17, and 18 can be generated using these 16 gates. The
code to do this can be found in Appendix C.

Hyperbolic curves
One of the most famous demonstrations of the imaginary
roots of a quadratic equation comes in the form of x2 + 1
= 0. Ordinarily, we think of this function as having no
factors, i.e. it cannot be written as a polynomial. However,
if we rewrite this equation in XNOR and XOR, we see
that we can generate a polynomial as follows:

(∆!x + 1∆)(–∆!x + 1∆)

Plotting this gives us the usual hyperbolic polynomial
curve that we have seen before. But what about other
equations? Are there other equations that are considered
to be completely factorized, which can be factorized fur-
ther with this method? The author doesn’t know but we
can look at other equations that are close to being factor-
ized, like:

2x2 + 2x + 10 = 0 (1)

If we pull the common factor out, we get:

2(x2 + x + 5) = 0 (2)

If we make use of the 16-dimensional spaces (shown
above) we can rewrite equation (1) as:

(1A – xA)(–5I + xI) (3)

where ‘A’ and ‘I’ are LGA spaces: ‘0000’ and ‘1000’ or
AND. But how do we determine, which spaces we are to
use?

The method the author employed makes use of matrixes,
cartesian products and set theory to narrow down the like-
ly candidates. Once we have the candidates, we can start
applying them to the quadratic matrixes to see if they sat-
isfy the result. But there is a much simpler method, which
we will also look at in this section, using tables and
Numpy matrices.

Fina
l p

ag
e p

roo
fs

 10
Canadian Journal of Pure and Applied Sciences

The result (1A – xA)(–5I + xI) can then be plotted. In
Figure 21, we see what is usually meant by a hyperbolic
curve in algebra using the same coefficients as in the ear-
lier examples. As we can see this is just a saddle graph.
Whereas graphing (1A – xA)(–5I + xI) gives us what we
have been calling a hyperbolic graph shown in Figure 22.

 Fig.
21. What is ordinarily thought of as a Hyperbolic Qua-
dratic, z = (x2 + y2)/2 + 5.

Fig. 22. The actual Hyperbolic Quadratic made from Log-
ic Gates.

We can plot them all together, to show that (1A – xA)(–5I
+ xI) produces a much better match for the curve than the
saddle graph does (Appendix D). This is shown in Figure
23. But notice that the aqua-colored graph is skewed in
relation to our original surface from equation (1). This
result suggests that we have not merely graphed connec-
tion between two orthogonal parabolic curves previously

shown in Figure 3, but that we have transformed the orig-
inal curve, before doing so.

The roots of equation (1) are at (0.5, 2.1794) and (–0.5, –
2.1794). These coordinates are located in the center of the
green patch shown in Figure 24.

Fig. 23. The comparison of various related quadratic
shapes.

Fig. 24. The roots of quadratic functions.

What can we say about expressions, which are lacking
imaginary roots that are close to being factorized or com-
pletely factorized? Can these be graphed in higher dimen-
sional space? The answer is ‘yes’. Let’s take 2x2 + 4x + 2.
Its roots are x = –1. Taking out the common factor, we
have:

x2 + 2x + 1

If we were to take the factors of this quadratic, we get (x +
1)(x + 1). We can make a table out of this, to produce:

Fina
l p

ag
e p

roo
fs

 11
Christopher C. O’Neill

When we add all of the like terms in this table together we
return to x2 + 2x + 1. In order to make it fit the function
2x2 + 4x + 2, we need to apply logic gates ‘A’ and ‘P’ to
the matrix. This will ensure that the elements in the table
are routinely positive or negative or cancel each other out.
We will call these tables AA and AP:

We multiply the results of both tables AA and AP by orig-
inal matrix. This is a direct multiplication of like num-
bered index values, not the more complex version of ma-
trix multiplication most people are accustomed to. A.A =
+2 (i.e. double the original value) whereas P.P = –2 and
A.P = 0. Therefore:

(4)

(5)

Then we simply sum the products of equation (4) and (5):

This gives us our original expression: 2x2 + 4x + 2. Now,
all that is required is to divide by 2 and we have x2 + 2x +
1, or:

(xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A)

Conceivably, a similar process could be applied to create
any quadratic without imaginary roots. Once we have our
expression, we can plot it over a range to produce a graph.

Previously, these graphs included imaginary numbers and
were, in some sense, considered 4-dimensional. Our new-
est expression was created using the 3 real-space dimen-
sions and two other imaginary dimensions ‘A’ and ‘P’. As
a result, we may consider the totality of the output to be
5-dimensional. Although, this is debatable as ‘A’ and ‘P’
are constructed entirely out of pluses and minuses respec-
tively, which when summed produces ‘G’ or XOR. If this
is the case, then ‘i’ doesn’t represent a 4-dimensional axis,
merely another way of looking at our 3-dimensional axes.

Fig. 25. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) (a)
and its inverse (meaning multiplied by –1) (b).

When several of these dimensions are graphed simultane-
ously, we see the shapes above. Figure 25b is the inverted
version of Figure 25a. The line bisecting the graph (a) is
our quadratic curve. It is also possible to invert the two
graphs and place them one on top of the other. For the
code for this see Appendix E.

x 1

x x2 x

1 x 1

A A × (x + 1)2 = [2x2 2x
2x 2]

AP × (x + 1)2 = [0 2x
−2x 0]

[2x2 2x
2x 2] + [0 2x

−2x 0] = [2x2 4x
0 2]

 P A

A 0 +

P – 0

 A A

A + +

A + +

(a)

(b)

Fina
l p

ag
e p

roo
fs

 12
Canadian Journal of Pure and Applied Sciences

This is further demonstrated in Figure 26, where the red
trace equals to (x2 + 2x + 1) and the aqua-colored trace
equals to (xA + A1)(–xA – 1A) + (xA + P1)(–xP + 1A).
We can plot our simple 4D parabolic equation in a vector
space to get a better understanding of what it might look
like in higher-dimensions. The author decided to play
around with this and generated a 5- or 6-dimensional
graph illustrating a field based on our quadratic formula.

Fig. 26. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) is
the aqua-colored graph. It is plotted alongside the garden
variety (x2 + 2x + 1) in red. Both graphs (a) and (b) are
the same, merely viewed from different angles.

The graph (Figure 27) is simply four spatial coordinates,
with the ‘y’ coordinate repeated in the ‘v’ coordinate and
the quadratic; (xA + A1)(–xA – 1A) + (xA + P1)(–xP +
1A). The result is interesting, because it shows that each
point in the vector space has between 2 and 7 vector
cones. All electro-magnetic fields fluctuate slightly (by
about the mass of a photon). This method appears to pro-
duce such a fluctuation as a matter of course, without the
need for any extra parameters. The code that produced
this graph can be found in Appendix F.

Rotation groups
One of the most important features of complex numbers is
there use in rotation groups. The Complex Plane repre-
sents a field of numbers that can turn and overwrite itself.
These groups are closed under addition and multiplication
and form a subring of C2.

in = 1, i, –1, –i, 1, i, –1, –i…
Can Dimensional Gate Operators do the same thing? It
turns out; Yes, they can. For Z2 rotation group, we can
rewrite the above in the following way (Figure 28):

∆12 = !∆1
!∆12 = ∆–1
!∆–12 = ∆–1
∆–12 = ∆1

Fig. 27. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) as a
4-dimensional system (a) and the enlarged area (b).

(a)

(b)

(a)

(b)

 !∆1

 !∆ –1 ∆1

 ∆–1

Fina
l p

ag
e p

roo
fs

 13
Christopher C. O’Neill

Fig. 28. Z2 rotation group using Dimensional Gate Opera-
tors (DGO) instead of imaginary numbers.

The same cannot be done, as far as the author knows, for
A2, i.e. those lattices that makes use of the Euler or Eisen-
stein integers, because they are predicated on the abstract
algebraic technique that we are reexamining from a new
perspective.

The implication of this reexamination is that whenever a
sum is calculated in ∆, the answer is immediately trans-
ported to !∆ and therefore undergoes a rotation of 90 de-
grees around some kind of computational axis. Here the
rules of arithmetic work differently. But each time we
take that answer and preform a new sum with it, it is as if
we were rotating it back by an angle of 90 degrees, back
to the identity.

But how would this effect normal everyday computa-
tions? If we add something to one side of the equation, we
must add it to the other. But what we are really doing is
subtracting it from the right side, as the rules are inverted.
As we can see, the results are entirely the same, so there is
no reason to rewrite all of mathematics and start changing
the rules of the game. The same must be said of the above
diagram. The author doesn’t believe that current ‘i’ nota-
tion or method should be replaced with the ‘∆’ notation or
method since they are ultimately equivalent and may even
prove confusing since ∆ is used elsewhere in Quantum
Mechanics to stand for various items including uncertain-
ty, ‘change in’ and the discriminant. But it is also used in
logic for XOR and XNOR, so we won’t be changing that
either.

While the author thinks it is important to preserve order
and notation in mathematics. Also, it is important to ex-
plore new areas and perspectives on even basic mathemat-
ical principles and it is this that Logic Gate Algebras
(LGAs) can provide.

Trigonometry and Earlier Research
During the course of writing and researching the subject
of imaginary numbers, the author encountered several
other papers on a similar theme. The first of these is Mar-
tin A. Hays, who understood that the XNOR logic gate
can be used to explain the rule set of imaginary numbers
and has developed several complex systems of numbers
based on them. Mostly his work appears to focus on
quaternions, neuroscience, economic issues and voting, so
the rest of his work though interesting is not strictly ap-
plicable here (Marks-Tarlow et al., 2015; Hay, 2016).

Another author and mathematician, by the name of Deep-
ak Bhalchandra Gode discovered the same principle. His
work shows that complex arithmetic can be undertaken
without the use of complex numbers and he uses complex
trigonometric functions to do this (Gode, 2014). However,
since complex numbers were introduced in large part to
avoid the complexity of trigonometry in physics, the utili-

ty of this work is questionable (Renou et al. 2021. Quan-
tum physics needs complex numbers. arXiv:
2101.10873v1). Be that as it may, Gode appears to be the
first person to write and publish his work on the subject of
the real multiplicative rule sets of imaginary numbers, as
far as the author can tell.

CONCLUSION

Logic Gate Algebra (LGA) produces a well-ordered,
commutative, and associative algebra that doesn’t rely on
complex conversions to Lie Groups or Clifford Algebras.
It should be noted that one LGA space is not necessarily
commutative with another, but this is seen as a strength of
the system, rather than a weakness, and has many ap-
plications in numerous fields outside of LGA, such as
Quantum Mechanics. For more on this, see, my work enti-
tled “The shape of a photon” will discuss. However, it is
also worth noting that whatever the LGA is graphing it is
not the initial real valued function, or its complex roots
function (if one exists). We can tell this because of the
results of our Quadratic Formula, where 1 + 3i and 1 – 3i
became 2 and 4 instead. The Real function is our par-
abolic curve, the imaginary curve are the roots provided
by the quadratic and the LGA curve appears to be a map
between these two with its own set of roots and coordi-
nates. This suggests that the LGA may represent some
kind of hereto unknown change of basis or coordinate
system.

ACKNOWLEDGMENTS

The author would like to thank Dr. Laurence Cuffe,
Noirin and Declan O’Neill.

REFERENCES

Campello de Souza, RM., de Oliveira, HM. and Silva D.
2002. The Z transform over finite fields. Proceedings of
the IEEE/SBrT International Telecommunication Sympo-
sium. pp.362-367. https://arxiv.org/pdf/1502.03371.pdf

Gode, DB. 2014. Complex number theory without imagi-
nary number (i). Open Access Library Journal. 1(7):e856
(13 pages). DOI: http://dx.doi.org/10.4236/oalib.1100856.

Hamilton, WR. 2000. On Quaternions, or on a new sys-
tem of imaginaries in algebra. The London, Edinburgh
and Dublin Philosophical Magazine and Journal of Sci-
ence. XXV-XXXVI(3rd Series):pp.92. (Hamilton, WR.
1847. XXXVI. On Quaternions, or on a new system of
imaginaries in algebra. Proceedings of the Royal Irish
Academy. Philosophical Magazine Series 3. 31(207):214)
DOI: https://doi.org/10.1080/14786444708645826.

Hay, MA.2016. Recursive distinctioning, tetracoding and
the symmetry properties of chiral Tetrahedral molecules.
Journal of Space Philosophy. 5(2):28-55. http://kepler-
spaceinstitute.com/wp-content/uploads/2017/11/JSP-Fall-
2016-11_Hay-Final.pdf

https://arxiv.org/pdf/1502.03371.pdf
http://dx.doi.org/10.4236/oalib.1100856
https://doi.org/10.1080/14786444708645826
http://keplerspaceinstitute.com/wp-content/uploads/2017/11/JSP-Fall-2016-11_Hay-Final.pdf
http://keplerspaceinstitute.com/wp-content/uploads/2017/11/JSP-Fall-2016-11_Hay-Final.pdf
http://keplerspaceinstitute.com/wp-content/uploads/2017/11/JSP-Fall-2016-11_Hay-Final.pdf

Fina
l p

ag
e p

roo
fs

 14
Canadian Journal of Pure and Applied Sciences

Karam, R. 2020. Why are complex numbers needed in
quantum mechanics? Some answers for the introductory
level. American Journal of Physics. 88(1):39-45. DOI:
https://doi.org/10.1119/10.0000258.

Marks-Tarlow, T., Hay, MA. and Klitzner, H. 2015.
Quaternions, chirality, exchange interactions: A new tool
for neuroscience? Society for Chaos Theory in Psycholo-
gy and Life Science Newsletter (SCTPLS Newsletter).
32(1):8-14. Available online: http://www.markstarlow.-
c o m / w p - c o n t e n t / u p l o a d s / 2 0 1 7 / 0 3 /
QuaternionFeature-2015.pdf.

Moosavian, SF. and Pius, R. 2019. Hyperbolic geometry
and closed bosonic string field theory. Part II. The rules
for evaluating the quantum BV master action. Journal of
High Energy Physics. 2019(8):177 (48 pages). DOI:
https://doi.org/10.1007/JHEP08(2019)177.

Teh, R. 2010. Generalized Jacobi elliptic one-monopole -
Type A. International Journal of Modern Physics A.
25(31):5731-5746. DOI: http://dx.doi.org/10.1142/
S0217751X10051062.

https://doi.org/10.1119/10.0000258
http://www.markstarlow.com/wp-content/uploads/2017/03/QuaternionFeature-2015.pdf
http://www.markstarlow.com/wp-content/uploads/2017/03/QuaternionFeature-2015.pdf
http://www.markstarlow.com/wp-content/uploads/2017/03/QuaternionFeature-2015.pdf
https://doi.org/10.1007/JHEP08(2019)177
http://dx.doi.org/10.1142/S0217751X10051062
http://dx.doi.org/10.1142/S0217751X10051062

Fina
l p

ag
e p

roo
fs

 15
Christopher C. O’Neill

Appendix A.
Python code for cubic equation (LGA). For a more gener-
al case, see Appendix C below.

from plotly.graph_objs import *
import plotly
import plotly.graph_objs as go
import math

#a more cubic form (x+x)(y+y)
space = []
for i in range(-5, 6):
 for c in range(-5, 6):
 y = (i, c)
 space.append(y)

n = []
v = []
h = []
for i in space:
 for c in space:
 u = (i[0]*c[0])*-1
 p = i[1]*c[1]
 g = u+p
 n.append(g)
 v.append(c[0]+i[1])
 h.append(i[0]+c[1])

n1 = np.array(n).reshape(int(math.sqrt(len(n))), int(math-
.sqrt(len(n))))
n1 = np.rot90(n1, -3)

pz = int(math.sqrt(len(n)))
x = list(range(pz))

data = [go.Mesh3d(
 x = h,
 y = v,
 z = n,
 #alphahull=0,
 colorscale=colourscales[-1],
),
]
layout = go.Layout(dict(title='Complex',
 titlefont= {"size": 14},
 font={'color':'black'},
 paper_bgcolor= 'white',
 plot_bgcolor= "white",
 hovermode='closest'))
figure = dict(data=data, layout = layout)
iplot(figure)

Appendix B.
Python code for the division of (x!∆+3∆)/(y!∆+4∆).

#(x(xnor)+3)/(x(xnor)+4) Division Logic Gate Algebra
graphed in 3-D
n = []
v = []

h = []
for i in range(-10, 11):
 for c in range(-10, 11):
 if c != 0:
 u = (i/c)*-1
 else:
 u = 0
 p = 3/4
 g = (u+p)
 n.append(g)
 v.append(i)
 h.append(c)

data = [go.Mesh3d(
 x = h,
 y = v,
 z = n
),
]
layout = go.Layout(dict(title='Complex',
 titlefont= {"size": 14},
 font={'color':'black'},
 paper_bgcolor= 'white',
 plot_bgcolor= "white",
 hovermode='closest'))

figure = dict(data=data, layout = layout)
iplot(figure)

Appendix C.
This python code will generate any number of 3-dimen-
sional surface graphs based on the 16-dimensional Di-
mensional Gate Operators shown in Figure 20. When you
run the code, you will be prompted to enter in a set of
logic gates. The logic gates are labelled ‘sedens’ in the
code and are the exact inverse correspondence to those
shown in Figure 20.

The one other variable that can be altered in this code is
the ‘power’ variable. If the power variable is set to ‘2’,
then we have a quadratic, ‘3’ (as in the example below)
gives a cubic curve and so on.

from plotly.graph_objs import *
import plotly
import plotly.graph_objs as go

b = input("Input a Logic Gate: ")

sedens = {'A': [1,1,1,1], 'B': [1,1,1,-1], 'C': [1,1,-1,1], 'D':
[1,1,-1,-1], ‘E':[1,-1,1,1], ‘F’:[1,-1,1,-1], 'G':[1,-1,-1,1],
'H':[1,-1,-1,-1], 'I':[-1,1,1,1], 'J':[-1,1,1,-1], 'K':[-1,1,-1,1],
‘L':[-1,1,-1,-1], 'M':[-1,-1,1,1], 'N':[-1,-1,1,-1], 'O':
[-1,-1,-1,1], 'P':[-1,-1,-1,-1]}

power=3
def replace1(boz):
 try:
 boz = boz.replace(',', '')

Fina
l p

ag
e p

roo
fs

 16
Canadian Journal of Pure and Applied Sciences

 boz2 = boz.replace(' ', '')
 boz = boz.split()
 return(boz, boz2)
 except:
 pass

def sed2(list1):
 got=[]
 for i in list1:
 for c in list1:
 if i == c:
 got.append(1)
 else:
 p = (sum(sedens[i])+sum(sedens[c]))
 got.append(p)
 return(got)
funcs = []
srce = (replace1(b))
(list1, list2) = srce
lens = len(list1)
go = (sed2(list1))

if lens <= 2:
 start= -6
 end = 7
elif 2 < lens < 4:
 start= -5
 end = 6
elif 3 < lens < 5:
 start= -4
 end = 5
elif 4 < lens < 6:
 start= -2
 end = 3
else:
 start = -1
 end = 2

print(start, end)
p = product(list2, repeat=power)
print(list1)

t = []
for i in p:
 x = list(i)
 t.append(x)

r0 = []
for i in t:
 x = '\']*perms[\''.join(i)
 r0.append(x)

r = []
for i in r0:
 jk = 'perms[\'' + i + '\']'
 r.append(jk)

perms1 = product(range(start, end), repeat=lens)

#use the perms to build a dictionary with keys and values
from the list,
test=[]
for cc in perms1:
 gg = list(zip(list1, cc))
 test.append(gg)

past = []
for chi in test:
 perms={}
 for rei in chi:
 perms[rei[0]]=rei[1]
 res = [eval(i) for i in r]
 res2 = [res[a]*go[a] for a in range(len(go))]
 piece = sum(res2)
 past.append(piece)

perms2 = product(range(start, end), repeat=lens)

vee=[]
hee=[]
for i in perms2:
 hee.append(i[0])
 vee.append(i[1])

print(len(past), len(vee), len(hee))

data = [go.Mesh3d(
 x = hee,
 y = vee,
 z = past
),
]
layout = go.Layout(dict(title='Complex Parabolic Curve',
 titlefont= {"size": 14},
 font={'color':'black'},
 paper_bgcolor= 'white',
 plot_bgcolor= "white",
 hovermode='closest'))

figure = dict(data=data, layout = layout)
iplot(figure)

Two examples of the above code using a power value of 3
and 4 respectively produces the following outputs:

Input a Logic Gate: G, C, C
-5 6
['G', 'C', 'C']
1331 1331 1331

Input a Logic Gate: N, N, L
-5 6
['N', 'N', 'L']
1331 1331 1331 

Fina
l p

ag
e p

roo
fs

 17
Christopher C. O’Neill

Fig. 29. The complex parabolic curve G, C, C.

Fig. 30. The complex parabolic curve N, N, L.

Appendix D.
This python code reproduces the three colored plots
shown in Figure 23. None of the variable names have any
meaning, they are simply chosen so as not to conflict.

import plotly.graph_objects as go
import numpy as np

da1 = []
ma1 = []
so1 = []
la1 = []
bla1 = []
a = 1
b = -5
t = list(range(-50, 50))

for cc in t:
 for yc in t:
 pc = ((cc**2)/2)-((yc**2)/2)+10
 po = (2*(cc**2))+(2*yc)+10
 d = [a, -cc, b, yc]
 e = d[0]*d[2]
 if e < 0:
 e = e*-1
 e1 = d[0]*d[3]
 if e1 < 0:
 e1 = e1*-1
 e2 = d[1]*b
 if e2 < 0:
 e1 = e1*-1
 e3 = (d[1]*b)*-1
 e4 = (d[1]*d[3])*-1
 e5 = (e+e)+(e1+e1)+(e2+e3)+(e4+e4)
 da1.append(e5)
 ma1.append(cc)
 so1.append(yc)
 la1.append(pc)
 bla1.append(po)

fig = go.Figure(data=[go.Mesh3d(x=ma1, y=so1, z=da1,
color='cyan')])
fig.add_trace(go.Mesh3d(x=ma1, y=so1, z=la1))
fig.add_trace(go.Mesh3d(x=ma1, y=so1, z=bla1))
fig.show()

Appendix E.
This python code reproduces the colored plots shown in
Figure 19.

import plotly.graph_objects as go
import numpy as np

da2 = []
ma2 = []
so2 = []
la2 = []
bla2 = []

for i in range(-30, 30):
 for x in range(-30, 30):
 y = np.array([i, 1])
 c = np.array([x, 1]).reshape(2, -1)
 g = y*c
 d = (np.abs(g)*2)
 d1 = np.sum(d)
 f = np.array([[0, 2],[-2, 0]])
 m = (g*f)
 m1 = np.sum(m)
 kk = np.sum((d+m)/2)
 bb = ((x**2) + i + 1)
 d2 = d1*-1
 da2.append(i)
 ma2.append(x)
 so2.append(kk)
 la2.append(d2)

Fina
l p

ag
e p

roo
fs

 18
Canadian Journal of Pure and Applied Sciences

 bla2.append(d1)

da3 = np.ravel(da2).tolist()
ma3 = np.ravel(ma2).tolist()
so3 = np.ravel(so2).tolist()
la3 = np.ravel(la2).tolist()
bla3 = np.ravel(bla2).tolist()

fig = go.Figure(data=[go.Mesh3d(x=ma3, y=da3, z=bla3,
color='cyan')])
fig.add_trace(go.Mesh3d(x=da3, y=ma3, z=la3))
fig.show()

Appendix F.
This python code recreates the graph in Figure 27.

so4 = []
la4 = []
ta4 = []
so5 = []
la6 = []
ta7 = []

for im in range(-3, 4):
 for xs in range(-3, 4):
 for gs in range(-3, 4):
 for km in range(-3, 4):
 y = np.array([im, 1])
 c = np.array([xs, 1]).reshape(2, -1)
 g = y*c
 d = (np.abs(g)*2)
 d1 = np.sum(d)
 f = np.array([[0, 2],[-2, 0]])
 m = (g*f)
 m1 = np.sum(m)
 kk = np.sum((d+m)/2)
 bb = ((xs**2) + im + 1)
 so5.append(kk)
 la6.append(km)
 ta7.append(d1)
 so4.append(im)
 la4.append(xs)
 ta4.append(gs)

ta5= []
for im2 in range(-30, 30):
 for xs2 in range(-30, 30):
 ps = ((im2**2)/2)-((xs2**2)/2)+10
 ta5.append(ps)

fig = go.Figure(data = go.Cone(
 x=so4,
 y=la4,
 z=ta4,
 u=la6,
 v=la4,
 w=so5,
 colorscale='Blues',
 sizemode="absolute",

 sizeref=40))

fig.update_layout(scene=dict(aspectratio=dict(x=1, y=1,
z=0.8), camera_eye=dict(x=1.2, y=1.2, z=0.6)))
fig.show()

Appendix G.
This code produces the plot in Figure 5 but can also be
modified to produce Figures 3 and 4 as well.

import plotly.graph_objects as go
import numpy as np

do2 = []
re2 = []
so2 = []
la2 = []
di2 = []
ta2 = []

t = list(range(-10, 10))

for i in t:
 d = (i**2 + 1)
 do2.append(d)
 di2.append(i)

for x in t:
 e = (((x**2)*-1) - 0.25)
 so2.append(x)
 re2.append(e)

fa2=[]
sa2=[]
ba2=[]
fla2 = []
sre2 = []
fra2 = []

t = list(range(len(do2)))

for i in di2:
 for k in so2:
 e = (do2[i]*re2[k])
 fla2.append(e)
 sre2.append(i)
 fra2.append(k)
 if i < 0 and k >0:
 b = (do2[i]*re2[k])*-1
 fa2.append(b)
 ba2.append(i)
 sa2.append(k)
 elif i > 0 and k < 0:
 b = (do2[i]*re2[k])*-1
 fa2.append(b)
 ba2.append(i)
 sa2.append(k)
 elif i > 0 and k > 0:
 b = (do2[i]*re2[k])

Fina
l p

ag
e p

roo
fs

 19
Christopher C. O’Neill

 fa2.append(b)
 ba2.append(i)
 sa2.append(k)
 else:
 b = (do2[i]*re2[k])
 fa2.append(b)
 ba2.append(i)
 sa2.append(k)

fa3 = np.ravel(fa2).tolist()
sa3 = np.ravel(sa2).tolist()
ba3 = np.ravel(ba2).tolist()
fla3 = np.ravel(fla2).tolist()
sre3 = np.ravel(sre2).tolist()
fra3 = np.ravel(fra2).tolist()

fig = go.Figure(data=[go.Mesh3d(x=ba3, y=sa3, z=fa3)])
fig.add_trace(go.Mesh3d(x=sre3, y=fra3, z=fla3))
fig.show()

