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ABSTRACT 

This work starts by examining the square root problem, i.e. (–1)1/2. By looking for practical solutions to this problem, it 
arrives at a new mathematical space, where imaginary numbers can be reinterpreted free from their algebraic context and 
therefore from an entirely different perspective. This new mathematical space is based on XNOR logic gates and deals 
strictly with operators. Further permutations of this method lead to a total of 16-dimensional gate operator spaces, which 
may have some application to Quantum Mechanics.  
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Algebra.  
 

INTRODUCTION TO THE OCTONIONS 

Imaginary numbers are invaluable in many areas of math-
ematics, physics, and, in particular, quantum mechanics 
(Karam, 2020), see also in (“Hermitian Operators and 
their Applications” by AS. Hicks) and (“Quantum physics 
needs complex numbers” by Marc-Olivier Renou et al., 
arXiv:2101.10873v1). They allow us to extend our under-
standing of the real numbers into the abstract realm of the 
Complex Plane. Complex numbers are in the form of (a + 
bi), where ‘a’ and ‘b’ are real numbers (like 1, 2, 3…) and 
‘i’ is the square root of –1. The Complex Plane can be 
further extended into the 4-dimensional realm of the 
Quaternions, Octonions, and Sedenions, etc. In 1843, the 
famous Irish mathematician and physicist William Rowan 
Hamilton extended the complex numbers into the 4-di-
mensional realm of the Quaternions (Hamilton, 2000). 
Shortly thereafter, Hamilton’s friend John T. Graves dis-
covered the Octonions. 

Since then, a 16-dimensional hypercomplex, known as the 
Sedenions has been discovered. But with each successive 
extension of the Reals into the imaginary realms, some 
functionality has been lost. The Real numbers are very 
good at describing and modelling the world. This is be-
cause they are ordered, commutative, and associative. 
When we move to the Complex Plane, the numbers are no 
longer ordered. This is because the value of (–1)1/2 is not a 
known value. When we reach the Quaternions, we lose 
the property of commutation. And the situation gets worse 
as we go to the Octonions where the property of associa-
tivity is lost. Now, a×(b×c) no longer equals to (a×b)×c. 
This makes it difficult to do actual calculations in these 

mathematical realms. By the time, we get to the Sede-
nions all hell breaks loose and nontrivial division by zero 
is allowed. Perhaps that is why John Baez asked; ’If octo-
nions are the crazy uncle that no one lets out of the attic, 
would sedenions be the serial killer maximum-security 
prison escapee that no one even lets in the 
h o u s e ? ’ ( h t t p s : / / e n . w i k i p e d i a . o r g / w i k i /
Talk%3ASedenion).  

Nowadays, scientists, mathematicians, and physicists like 
to think of complex numbers as variables over finite fields 
(Campello de Souza et al., 2002). This produces another 
layer of abstraction which can used to model electrical 
fields and has a great deal of application in String Theory 
(Moosavian and Pius, 2019). But how does an increase in 
abstraction help us clear up the confusion surrounding an 
already abstracted problem? It doesn’t. Therefore, the 
author proposes going the other way, and stripping the 
imaginary of the abstract to revealing the true form it has 
been hiding from us, all along. 

Real or Imaginary?  
When (–1)1/2 was first encountered in quadratic equations, 
its usefulness wasn’t considered outside of how it could 
be used for equations to resolve them (https://
en.wikipedia.org/wiki/Cubic_equation). The 16th Century 
Italian poly-mathematician Gerolamo Cardano was the 
first to take notice of it. But it wasn’t until Rafael 
Bombelli, ‘the father of complex numbers’ that the prob-
lem was really understood and their potential truly known 
(https://en.wikipedia.org/wiki/Rafael_Bombelli).  

_____________________________________________________________________ 
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The problem can be stated as x2 = –1. We have to solve 
for x. If we substitute +1 for x we get +1, so that can’t be 
right. If we use –1, we still get plus one. So that can’t be 
right either. In fact, no matter what number we use, we 
will never get x2 = –1. 

One way to get around this problem is to rewrite x as i 
and set it as a ‘complex number’ (a + bi). Then, we multi-
ply the complex number (a + bi) by its conjugate (a – bi) 
to obtain the absolute value of any number in the complex 
plane. This result is possible because squaring of (–1)1/2 
gives –1. 

But is there another solution to this problem? Perhaps a 
solution that doesn’t persist in giving more and more ab-
stract interpretations? In order to find this solution, we 
need to examine how operators work. What does the au-
thor mean by operators in this context? 

In the mathematical language, operators are those like {+, 
–, ×, ÷}. When we multiply a positive number by a posi-
tive number, we get a positive real number. When we 
multiply a negative by a positive, we get a negative and 
when we multiply a negative by a negative, we get a posi-
tive number. It is the first and last rules that prevent us 
from solving the problem of (–1)1/2. So, what do we do? 
We change the order of the operators and how they work. 

There are many ways to do this. The current arrangement 
of our operators is isomorphic with the XOR logic rule 
set, also known as ‘exclusive or’ that is shown in Figure 
1. 
 

Fig. 1. The XOR logic rule set. 

As the reader can see in Figure 1, the 0s and 1s of the 
XOR exactly match the ‘+’ and ‘–’ of our operators. And 
this works equally well for the divisors. Why is our math-
ematics based on the XOR system, the reader might ask? 
Why not on some other more familiar logic system, like 
OR, AND, NOR, or NAND? It seems sort of arbitrary, 
doesn’t it? 

While there are good logical reasons for why a minus 
multiplied by a minus equals to a plus, it would appear 
that in the case of (–1)1/2 and the Complex Plane, this 
property no longer holds true (Marks-Tarlow et al., 2015). 
A very similar idea was put forward by Martin A. Hays, 
who has conceived of six different number systems using 
+0, –0 and the shape of the Necker Cube to generate a 

new mathematical system. (‘Real and Imaginary Num-
bers’, available online: http://chiralkine.com/real-and-
imaginary-numbers/).  

If we examine the logic chain for XOR, which is 0110, we 
see that this is the binary number, which is itself equal to 
6 (or 7 depending on how one counts them.) Since there 
are 16 variations on a four-bit binary number, it is con-
ceivable that we have 16 variations of our number bit 
operators and it is certain that our new set of operators are 
to be found there. In fact, N. J. Wildberger posits the same 
idea in his video the “Implication and 16 logical opera-
tions” (https://www.youtube.com/watch?v=Xkqmu-
Ug_yFs). For an alternative perspective on this, see also 
the work by the author (C. O’Neill, “Logic Gate Arith-
met ic and Quatern ions” DOI: 10 .13140/RG.
2.2.10320.12809). 

Notice how the 16 logical operations correspond to the 
16-dimensions of the Sedenion Numbers. But unlike, the 
n-dimensional division algebras of the imaginary num-
bers, these systems will be both well-behaved (ordered), 
commutative, and associative. Furthermore, they will 
permit extensions into odd and singly-even dimensions. In 
this sense, 5, 6, and even seven-dimensional algebra will 
be possible in a manner that will be relatively simple and 
easy for anyone to understand. But before we do that, we 
must choose our operator set. So, what is the best choice? 
Obviously one where positive square numbers and nega-
tive square numbers equal to negative numbers. XNOR 
will easily achieve that is shown in Figure 2. 
 

Fig. 2. The XNOR logic rule set.  

With this set of operators, we can now easily prove (–1)1/2 
to be equal either to +1 or –1. Our next step is to privilege 
this result; meaning that from now on all of our mathe-
matics will be done in the XNOR (!∆) operator set. From 
here on out, all of our calculations will take place using 
the XNOR ruleset. We have already determined what the 
rules for multiplication and division, but in order to carry 
out even the most basic of calculations, we need to know 
the rules of addition and subtraction as well. 

Basic Arithmetic 
How does our new XNOR rule set deal with something 
simple like (a + b = c)? The answer is more difficult than 
we would at first imagine. Let’s take a look at the rules 
for addition in XOR: 

A + (+B) = A + B 

http://chiralkine.com/real-and-imaginary-numbers/
http://chiralkine.com/real-and-imaginary-numbers/
https://www.youtube.com/watch?v=XkqmuUg_yFs
https://www.youtube.com/watch?v=XkqmuUg_yFs
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A + (–B) = A – B 
A – (+B) = A – B 
A – (–B) = A + B 

As we can see, these are identical to the multiplication 
rules of XOR. Now let’s look the same rules in XNOR: 

A + (+B) = A – B 
A + (–B) = A + B 
A – (+B) = A + B 
A – (–B) = A – B 

They are just the opposite. In light of this, we can do 
arithmetic at all stages across the divide of the XNOR and 
XOR dimensional axes or gateways. But how does this 
work with some simple real-world examples? If we have 
the sum 4 + 6 = 10 (in XOR) and we exchange the opera-
tors, we get: 

4 + (+6) = +10 
4 + (–6) = –2 
–4 – (+6) = –10 
4 – (–6) = +10 
–4 – (–6) = +2 

In XNOR, we get the complete inverse: 

4 + (+6) = –2 
4 + (–6) = +10 
–4 – (+6) = +2 
4 – (–6) = –2 
–4 – (–6) = –10 

Now that we have our new rule set of arithmetic we can 
apply it to more complex examples. When we do this, we 
inevitably find the somewhat perplexing value of (+1)1/2, 
which can’t be solved with our current operators. Our new 
XNOR equation for the quadratic formula looks like this: 

 

Using this to solve the equation 2x2 + 4x + 20 = 0 will 
require us to use the ruleset for basic arithmetic seen in 
the last table. This results in part of the expression being 
(–16–160)1/2, which based on above ruleset is (144)1/2. 
However, this can be confusing. Therefore, we can multi-
ply by –1, which is the method employed in the computer 
programs in the Appendices 

 

 

 

which is equal to 1 – 3i or 1 + 3i. In XOR, we know that i 
= ±1 and so our answer becomes –2 or 4. Now, we have a 
complete and ordered set of operators for the complex 
plane and we can do algebra with it. We will call this al-
gebra, Logic Gate Algebra. 

Imaginary Numbers are Real 
In a very popular video by Welch Labs, entitled ‘Imagi-
nary Numbers Are Real [Part 1: Introduction]’ (https://
www.youtube.com/watch?v=T647CGsuOVU), there is a 
demonstration of the concept of imaginary numbers and 
how they can be used to find the roots of quadratic equa-

tions, which otherwise don’t appear to have any roots. 
Fig. 3. This graph showing the polynomial roots of x2 + 1 
generated on the online graphing application Geogebra 
(https://www.geogebra.org/m/U2HRUfDr).  

An example of what is being described in the video can 
also be seen in Figure 3. Here we have a parabola x2 + 1 
and we are interested in the roots of this function. Accord-
ing to the video, there are no roots to this function, as the 
parabola does not cross the x-axis. However, according to 
Gauss’s Fundamental Theorem of Algebra, any polynomi-
al of degree n must have n roots. When we look we see 
that our equation has degree 2, therefore it has 2 polyno-
mial roots. 

The solution can be once again found using the Quadratic 
Formula. The answer can be partially seen in Figure 3. 
There is a grey line (representing x2 + 1 and a red line, 
which is the imaginary curve and can be see crossing the 
x-axis at two points. 

In the video, we are shown an interesting animation, 
where the function is stretched into a 2nd dimension and 
pulled down below the x-axis (See Figure 4). This shows 
a kind of analytic continuation between the Real and 

y =
b ± −b2 − 4(ac)

2a

y =
4 ± −16 − (160 × ( − 1))

−4

y =
4 ± 144

−4

y =
4

−4
± 144

−4

https://www.geogebra.org/m/U2HRUfDr
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imaginary part of the equation, like a map between the 
two different functions. In some sense, then this new sur-
face is the true form of the equation x2 + 1, as it contains 
the most information about the surface and where it con-
nects, too. 

Fig. 4. The animation showing the complex roots of x2 + 
1. Image credit: Welch Labs (https://www.youtube.com/
watch?v=T647CGsuOVU). 
 

Fig. 5. The blue trace for x2 + 1 and the red trace for – x2 – 
0.25. 

The question is: Is it possible to create a function or a 
program which actually generates this surface and can we 
use the new XNOR ruleset to help us in doing so? If we 
attempt to graph our original function x2 + 1 and the 
imaginary roots of function (– x2 – 0.25), we get some-
thing not unlike Figure 5. 

We need some way to extend these two surfaces so that 
they interact with one another. As we known, x2 + 1 cre-
ates a parabola, which is itself the result of multiplying 

two lines together. Therefore, we may be able to extend 
these two parabolas by multiplying them together, in a 
special way. The result of this simple process can be seen 
in Figure 6 and the code which generated this image can 
be found in Appendix G. The reader will note that it 
looks nothing like what is presented in the animation in 
Figure 4. 

Instead, what we have is a kind of singularity, not unlike 
the kind of 2-dimensional singularities used to model 
black holes in a popular sense. Similar structures also 
presented in (Teh, 2010). This would appear to reinforce 
the connection between Riemannian Geometry and the 
curvature of spacetime, since we have quickly arrived at a 
model of a 2-dimensional blackhole, simply by muddling 
around with functions and their imaginary counterparts. 
 

Fig. 6. The result of the parabolas x2 + 1 and – x2 – 0.25 
being multiplied together. 
 

https://www.youtube.com/watch?v=T647CGsuOVU
https://www.youtube.com/watch?v=T647CGsuOVU
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Fig. 7. An attempt to incorporate the XNOR ruleset into 
the program (Appendix G).  
The reader will notice that there is no mention of any of 
the Logic Gate Algebra in this method. We can attempt to 
implement a kind of Logic Gate Algebra (also demon-
strated in the code in Appendix G), but the methods and 
the results are dubious, at best, and require refinement. 

So how do we go about creating maps between the Real 
numbers and the imaginary numbers, like the ones see in 
the animation in Figure 4? The simplest and most obvious 
route would be to simply transform one parabolic curve 
by the other. But that is also not very interesting. 

Undiscovered Regions 
Quadratic equations are equations in the form ax2 + bx + c 
= 0. This form holds true for both the Real numbered part 
and the imaginary part, but we can’t always expect it to 
hold true for all parts of our mapping and in fact, it will 
likely only be the case at very specific places where the 
like terms are being multiplied by one another. But before 
we can do that, we need to look at some of the basics of 
linear algebra in the Logic Gate Algebra system.   

Suppose we want to plot the expression: 2(3 + i)(4 + i). 
Under the original Complex Plane method this would lead 
to: 

2(3 + i)(4 + i) = 22 + 14i 

Under the Logic Gate Algebra, our original expression 
would be rendered in the form 2(!∆ + 3)(!∆ + 4); the 
terms are reversed, because we have privileged the use 
of !∆(XNOR) over ∆(XOR). The result of this is: 

2(!∆ + 3)(!∆ + 4) = 22 

This is much simpler and well ordered. But what is going 
on here? When multiplying through the two different sys-
tems XNOR and XOR, we have to multiply the terms 
twice, once in each system. This generates two equal re-
sults of opposite signs, which then cancel each other out. 

2(!∆+3)(!∆+4) 
2(–1 + (4–4) + (3–3) + 12) 
2(–1+12) = 22  

This is equivalent to multiplying FL instead of the full 
mnemonic: FOIL, which stands for (First, Outer, Inner, 
Last). But we can’t expect this to work with larger expres-
sions like (!∆ + 1)3 or (!∆ + 1)4 and so on. A more general 
approach can be seen in Appendix C. Alternatively, they 
can be placed into matrices where the values cancel out to 
zero and the remainders are summed to give the answer. If 
we were to simply graph 2(x + 3)(x + 4) on a normal 
Cartesian graph, we would get the familiar quadratic 
curve that is shown in Figure 8.  

Plotting the same function in the three-dimensional form 
(3D) with a plotting program gives similar but not so 
amazing result shown in Figure 9. Graphing the same 
function using XNOR and XOR on a 3-dimensional plane 
however produces interesting and beautiful results shown 
in Figures 10a and 10b.  
 

Fig. 8. The quadratic equation 2(x + 3)(x + 4).  

 
Fig. 9. The three dimensional form of 2(x + 3)(x + 4).  

This result is much closer to the kind of map that we see 
in Figure 4. But it does not appear to be exact and may be 
skewed. If so, then this is most likely the result of the 
double for loop needed to generate it. While the resulting 
surface succeeds in plotting the map between the Real and 
Imaginary functions, whatever this function is, it is defi-
nitely not the original function 2(x + 3)(x + 4). The author 
has yet to devise a method of discovering what the new 
function is [in the conventional sense] and how to trans-
late between the two in all cases. This will have to be left 
until subsequent research, as the research in this paper 
continues on. 

2.4 

1.6 

0.8 

   0 

 –4.8    –4.0    –3.2    –2.4
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Fig. 10. The more accurate 3-dimensional depiction (a) 
and (b) of 2(x + 3)(x + 4). 

Plotting domains  
Now that we have our new rules for Logic Gate Algebra 
or Order 2, so called because it deals with two coordi-
nates, we can begin plotting some functions. To start with, 
the author plotted results of all functions for (x!∆ + y∆)
(x1∆ + y∆) over a finite field to produce the polynomial 
distribution on the complex plane shown in Figure 11.  

We can increase or decrease the range and increase the 
step value to produce many such graphs. Interestingly, 
they all exhibit the same properties at every scale, much 
like how magnetic fields exhibit the same properties no 
matter if they are produced by a single atom or a whole 
storm of atoms nested in a magnetized block of metal. 

Graphing a single function is more revealing. In this case 
it is the function from earlier: 2(!∆+3)(!∆+4) that is 
shown in Figure 12. With this much simpler plot it is easy 
to see that what we are graphing here is simply the par-
abolic curve from earlier (see in Figures 13, 10a, and 
10b). As we know, this is the general shape of polynomial 

multiplication in the Logical Gate Space (LGS). But what 
about polynomial division algebras? 
 

Fig. 11. The complex plane: Polynomial distribution (a) 
for the range {–5, 5} and (b) {–2, 2} step 20. 
 

Fig. 12. The complex plane: Polynomial distribution, 2(!∆ 
+ 3)(!∆ + 4). 
 

Fig. 13. The hyperbolic quadratic, 2(!∆ + 3)(!∆ + 4).  

 (a)

 (b)

(a)

(b)
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Fig. 14. The hyperbolic Division Quadratic (a), 2(!∆ + 3)/
(!∆ + 4), and the polynomial division (b).  

Here we have (x!∆ + 3∆)/(y!∆ + 4∆), which produces this 
unusual ‘saw-toothed’ graph shown in Figure 14. The 
results for all functions of this kind, over a particular fi-
nite range can be plotted in 3D and reveal the same struc-
ture (see Appendix A for the code). This is interesting 
and shows that these functions are somehow embedded in 
themselves. The author has used a less opaque surface 
here (Figure 14b) to make the resulting structure more 
apparent. 

The major difference between more general division func-
tions like these and the previous multiplication functions 
is revealed when the range of the field is increased. These 
functions appear to show repeat patterns extending out 
across the plane, whereas the other one just stays in place 
and increases to infinity. Below, we have one section of 
the above function (a) and then an extended version (b) 
shown in Figure 15. Figure 15a is embedded in the graph 
of Figure 15b, although it helps to be able to rotate the 
two graphs to compare the shapes to see exactly where it 
is embedded. The other peaks and troughs hint that this 
structure repeats outside the limits of the field, but exactly 
how and in what way is not yet known, as it requires a 
large amount of processing power to generate such 
graphs. 

 

Fig. 15. The embedded (a) and extended (b) graphs.  

3-Dimensional cubic functions are enabled by (x + y)2, 
which was unexpected because the function is squared 
rather than cubed. The Plotly graphing library used to 
generate this has a bug in it that glues some of the faces 
together with unwanted polygons. The author has had to 
angle this graph so they remain hidden. Unfortunately, 
this may not be the best angle to view the cubic properties 
from but it should give the reader some idea. Fortunately, 
the code for this example is available in Appendix B. On 
the plus side, there is a way of altering the parameter al-
phahull (this is equivalent to convex hull for coordinate 
points) which when set to zero joins up all the faces of 
this cubic function to reveal a cuboctahedron; an object 
with 6 square and eight triangular faces. 

The complex plane cubic equation is shown in Figure 16. 
Graphing (x!∆ + 3)3 results in the hyperbolic cubic func-
tion shown in Figure 17. The alphahull = 0 of this graph 
equals a nicely skewed octahedron. The author doesn’t 
know if this means that there is a relationship between 3D 
cubic functions and platonic solids, but it is interesting to 

(a)

(b)

 (a)

 (b)
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speculate about. Plotting (∆, !∆, ∆)2 gives the familiar 
saddle graph shown in Figure 18. 

  
Fig. 16. The complex plane cubic equation.  

Fig. 17. The hyperbolic cubic function, (x!∆ + 3)3. 

Fig. 18. The saddle graph.  

For the most part, representations of the complex plane 
are done in two-dimensional heat maps. But two extra real 
space dimensions can always be added to these spaces 
making them 4-dimensional in total. 

It is impossible for the average human to visualize or 
imagine the fourth dimension but there are ways and 
means around this. For instance, we can plot three of our 
values as real space coordinate values and allow the 
fourth to be some kind of vector coordinate, denoting 
direction or flow. This works quite well. Another method 
is simply move each of the four-dimensions in and out of 
the three real space dimensions at a time, giving one a 
‘slice’ or a window into what the entire function might 
actually look like. This is not very satisfactory but for us 
mere 3-dimensional mortals, it is often the best that we 
can do. Graphing the saddle plot from Figure 16 in the 
vector coordinates gives the results shown in Figure 19.  
 

Fig. 19. The saddle graph using XNOR vectors.  

Complex Plane 
How does the XNOR ruleset work on the Complex Plane? 
For example, how does it deal with something like the 
Riemann Zeta Function? The Riemann Zeta function con-
tains an infinite series of the following kind: 

Re(z) = 1/1(a+bi) + 1/2(a+bi) + 1/3(a+bi) + 1/4(a+bi) + 1/5(a+bi) 
… 

where a and b are some Real numbered values and ‘i’ is 
of course the imaginary number. Working out the first 
three terms of the Riemann Zeta function results in 

1/1(2+3i) + 1/2(2+3i) + 1/3(2+3i) 
(∆1 +(– !∆1)) + 1/(4 + (–6)) + 1/(6 +(–9) 

∆: 0 + 1/(–2) + 1/(–3) 
!∆: 2 + (+1/10) + (+1/15) 
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∆: –0.5 + (–0.333333…) 
! ∆: 2 – 0.1 – 0.0666666… 

∆: –0.833333… 
!∆: 1.833333… 

∆: – 0.833333… + 1.833333… = 1 
!∆: – 0.833333… + (+ 1.833333…) = 2.666666… 

Therefore, the result in coordinates is (1, 2.666666). This 
is another level of LGA and is fully stocked for all arith-
metic, not just multiplication and division. As such this 
will be labelled LGA-1, whereas our previous system will 
be labelled as LGA-2. Arithmetic in LGA-1 is admittedly 
confusing. More work needs to be done on which opera-
tors pertain to XOR and which to XNOR and how they 
interact, otherwise the calculations will result in inconsis-
tent results. 

Other series that are useful to do real mathematics include 
the Taylor Expansion for trigonometric functions for the 
sine, cosine, and exponential functions. By applying the 
same rules of arithmetic to these functions, as above, we 
see that they equate to sin(x) = –y, cos(x) = y and the ex-
ponential function exp(x) = y – x. 

16-Dimensional spaces  
The LGA are arranged from ‘0000’ to ‘1111’ and ascribed 
letters ‘A’ through ‘P’ as shown in Figure 20. Here 0 = ‘+’ 
and 1 = ‘–’. Notice that ‘G’ is equivalent to XOR, ‘J’ with 
XNOR. There are other logic gates here, for example, 
including; ‘I’, ‘B’, and ‘O’, which correspond to AND, 
NOR, and NAND, respectively. 
 

Fig. 20. The LGA arranged from ‘0000’ to ‘1111’ and 
ascribed letters ‘A’ through ‘P’.  

If we can think of these 16 systems as distinct rules for 
addition in multi-dimensional space, then we notice some 
interesting properties. For instance, no matter the operator 
in ‘A’ the answer is always a positive. The opposite is true 
for ‘P’. In many of these spaces, like ‘C’, ‘D’, ‘K’ and ‘L’, 
a positive number by a negative number yields different 
results depending on how they are multiplied together. 
For instance: 

3C × (–3C) = –9 
–3C × 3C = 9 

This means that they are non-commutative in this respect. 
But in other respects, when the operators are the same, ‘C’ 
is commutative. Graphs similar to those seen in Figures 
16, 17, and 18 can be generated using these 16 gates. The 
code to do this can be found in Appendix C.  

Hyperbolic curves  
One of the most famous demonstrations of the imaginary 
roots of a quadratic equation comes in the form of x2 + 1 
= 0. Ordinarily, we think of this function as having no 
factors, i.e. it cannot be written as a polynomial. However, 
if we rewrite this equation in XNOR and XOR, we see 
that we can generate a polynomial as follows: 

(∆!x + 1∆)(–∆!x + 1∆) 

Plotting this gives us the usual hyperbolic polynomial 
curve that we have seen before. But what about other 
equations? Are there other equations that are considered 
to be completely factorized, which can be factorized fur-
ther with this method? The author doesn’t know but we 
can look at other equations that are close to being factor-
ized, like: 

2x2 + 2x + 10 = 0                                                          (1) 

If we pull the common factor out, we get: 

2(x2 + x + 5) = 0                                                           (2) 

If we make use of the 16-dimensional spaces (shown 
above) we can rewrite equation (1) as:  

(1A – xA)( –5I + xI)                                                     (3) 

where ‘A’ and ‘I’ are LGA spaces: ‘0000’ and ‘1000’ or 
AND. But how do we determine, which spaces we are to 
use? 

The method the author employed makes use of matrixes, 
cartesian products and set theory to narrow down the like-
ly candidates. Once we have the candidates, we can start 
applying them to the quadratic matrixes to see if they sat-
isfy the result. But there is a much simpler method, which 
we will also look at in this section, using tables and 
Numpy matrices.  
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The result (1A – xA)(–5I + xI) can then be plotted. In 
Figure 21, we see what is usually meant by a hyperbolic 
curve in algebra using the same coefficients as in the ear-
lier examples. As we can see this is just a saddle graph. 
Whereas graphing (1A – xA)(–5I + xI) gives us what we 
have been calling a hyperbolic graph shown in Figure 22.

 Fig. 
21. What is ordinarily thought of as a Hyperbolic Qua-
dratic, z = (x2 + y2)/2 + 5.  
 

Fig. 22. The actual Hyperbolic Quadratic made from Log-
ic Gates.  

We can plot them all together, to show that (1A – xA)(–5I 
+ xI) produces a much better match for the curve than the 
saddle graph does (Appendix D). This is shown in Figure 
23. But notice that the aqua-colored graph is skewed in 
relation to our original surface from equation (1). This 
result suggests that we have not merely graphed connec-
tion between two orthogonal parabolic curves previously 

shown in Figure 3, but that we have transformed the orig-
inal curve, before doing so. 

The roots of equation (1) are at (0.5, 2.1794) and (–0.5, –
2.1794). These coordinates are located in the center of the 
green patch shown in Figure 24. 
 

Fig. 23. The comparison of various related quadratic 
shapes. 
 

Fig. 24. The roots of quadratic functions. 

What can we say about expressions, which are lacking 
imaginary roots that are close to being factorized or com-
pletely factorized? Can these be graphed in higher dimen-
sional space? The answer is ‘yes’. Let’s take 2x2 + 4x + 2. 
Its roots are x = –1. Taking out the common factor, we 
have: 

x2 + 2x + 1  

If we were to take the factors of this quadratic, we get (x + 
1)(x + 1). We can make a table out of this, to produce: 
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When we add all of the like terms in this table together we 
return to x2 + 2x + 1. In order to make it fit the function 
2x2 + 4x + 2, we need to apply logic gates ‘A’ and ‘P’ to 
the matrix. This will ensure that the elements in the table 
are routinely positive or negative or cancel each other out. 
We will call these tables AA and AP:  
 

We multiply the results of both tables AA and AP by orig-
inal matrix. This is a direct multiplication of like num-
bered index values, not the more complex version of ma-
trix multiplication most people are accustomed to. A.A = 
+2 (i.e. double the original value) whereas P.P = –2 and 
A.P = 0. Therefore: 

                                          

(4) 

                                          

(5) 

Then we simply sum the products of equation (4) and (5): 

 

This gives us our original expression: 2x2 + 4x + 2. Now, 
all that is required is to divide by 2 and we have x2 + 2x + 
1, or: 

(xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) 

Conceivably, a similar process could be applied to create 
any quadratic without imaginary roots. Once we have our 
expression, we can plot it over a range to produce a graph. 

Previously, these graphs included imaginary numbers and 
were, in some sense, considered 4-dimensional. Our new-
est expression was created using the 3 real-space dimen-
sions and two other imaginary dimensions ‘A’ and ‘P’. As 
a result, we may consider the totality of the output to be 
5-dimensional. Although, this is debatable as ‘A’ and ‘P’ 
are constructed entirely out of pluses and minuses respec-
tively, which when summed produces ‘G’ or XOR. If this 
is the case, then ‘i’ doesn’t represent a 4-dimensional axis, 
merely another way of looking at our 3-dimensional axes. 
 

Fig. 25. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) (a) 
and its inverse (meaning multiplied by –1) (b).  

When several of these dimensions are graphed simultane-
ously, we see the shapes above. Figure 25b is the inverted 
version of Figure 25a. The line bisecting the graph (a) is 
our quadratic curve. It is also possible to invert the two 
graphs and place them one on top of the other. For the 
code for this see Appendix E. 

x 1

x x2 x

1 x 1

A A × (x + 1)2 = [2x2 2x
2x 2 ]

AP × (x + 1)2 = [ 0 2x
−2x 0 ]

[2x2 2x
2x 2 ] + [ 0 2x

−2x 0 ] = [2x2 4x
0 2 ]

 P A 

A 0 + 

P – 0

 A A 

A + + 

A + +

(a)

(b)
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This is further demonstrated in Figure 26, where the red 
trace equals to (x2 + 2x + 1) and the aqua-colored trace 
equals to (xA + A1)(–xA – 1A) + (xA + P1)(–xP + 1A). 
We can plot our simple 4D parabolic equation in a vector 
space to get a better understanding of what it might look 
like in higher-dimensions. The author decided to play 
around with this and generated a 5- or 6-dimensional 
graph illustrating a field based on our quadratic formula. 
 

Fig. 26. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) is 
the aqua-colored graph. It is plotted alongside the garden 
variety (x2 + 2x + 1) in red. Both graphs (a) and (b) are 
the same, merely viewed from different angles. 

The graph (Figure 27) is simply four spatial coordinates, 
with the ‘y’ coordinate repeated in the ‘v’ coordinate and 
the quadratic; (xA + A1)(–xA – 1A) + (xA + P1)(–xP + 
1A). The result is interesting, because it shows that each 
point in the vector space has between 2 and 7 vector 
cones. All electro-magnetic fields fluctuate slightly (by 
about the mass of a photon). This method appears to pro-
duce such a fluctuation as a matter of course, without the 
need for any extra parameters. The code that produced 
this graph can be found in Appendix F. 

Rotation groups  
One of the most important features of complex numbers is 
there use in rotation groups. The Complex Plane repre-
sents a field of numbers that can turn and overwrite itself. 
These groups are closed under addition and multiplication 
and form a subring of C2.  

in = 1, i, –1, –i, 1, i, –1, –i… 
Can Dimensional Gate Operators do the same thing? It 
turns out; Yes, they can. For Z2 rotation group, we can 
rewrite the above in the following way (Figure 28):  

∆12 = !∆1 
!∆12 = ∆–1 
!∆–12 = ∆–1 
∆–12 = ∆1 

 

Fig. 27. (xA + A1)(–xA – 1A) + (xA + P1)(–xP – 1A) as a 
4-dimensional system (a) and the enlarged area (b). 

(a)

(b)

(a)

(b)

         !∆1 

   !∆ –1         ∆1 

        ∆–1
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Fig. 28. Z2 rotation group using Dimensional Gate Opera-
tors (DGO) instead of imaginary numbers.  

The same cannot be done, as far as the author knows, for 
A2, i.e. those lattices that makes use of the Euler or Eisen-
stein integers, because they are predicated on the abstract 
algebraic technique that we are reexamining from a new 
perspective. 

The implication of this reexamination is that whenever a 
sum is calculated in ∆, the answer is immediately trans-
ported to !∆ and therefore undergoes a rotation of 90 de-
grees around some kind of computational axis. Here the 
rules of arithmetic work differently. But each time we 
take that answer and preform a new sum with it, it is as if 
we were rotating it back by an angle of 90 degrees, back 
to the identity. 

But how would this effect normal everyday computa-
tions? If we add something to one side of the equation, we 
must add it to the other. But what we are really doing is 
subtracting it from the right side, as the rules are inverted. 
As we can see, the results are entirely the same, so there is 
no reason to rewrite all of mathematics and start changing 
the rules of the game. The same must be said of the above 
diagram. The author doesn’t believe that current ‘i’ nota-
tion or method should be replaced with the ‘∆’ notation or 
method since they are ultimately equivalent and may even 
prove confusing since ∆ is used elsewhere in Quantum 
Mechanics to stand for various items including uncertain-
ty, ‘change in’ and the discriminant. But it is also used in 
logic for XOR and XNOR, so we won’t be changing that 
either. 

While the author thinks it is important to preserve order 
and notation in mathematics. Also, it is important to ex-
plore new areas and perspectives on even basic mathemat-
ical principles and it is this that Logic Gate Algebras 
(LGAs) can provide. 

Trigonometry and Earlier Research  
During the course of writing and researching the subject 
of imaginary numbers, the author encountered several 
other papers on a similar theme. The first of these is Mar-
tin A. Hays, who understood that the XNOR logic gate 
can be used to explain the rule set of imaginary numbers 
and has developed several complex systems of numbers 
based on them. Mostly his work appears to focus on 
quaternions, neuroscience, economic issues and voting, so 
the rest of his work though interesting is not strictly ap-
plicable here (Marks-Tarlow et al., 2015; Hay, 2016). 

Another author and mathematician, by the name of Deep-
ak Bhalchandra Gode discovered the same principle. His 
work shows that complex arithmetic can be undertaken 
without the use of complex numbers and he uses complex 
trigonometric functions to do this (Gode, 2014). However, 
since complex numbers were introduced in large part to 
avoid the complexity of trigonometry in physics, the utili-

ty of this work is questionable (Renou et al. 2021. Quan-
tum physics needs complex numbers. arXiv:
2101.10873v1). Be that as it may, Gode appears to be the 
first person to write and publish his work on the subject of 
the real multiplicative rule sets of imaginary numbers, as 
far as the author can tell. 

CONCLUSION  

Logic Gate Algebra (LGA) produces a well-ordered, 
commutative, and associative algebra that doesn’t rely on 
complex conversions to Lie Groups or Clifford Algebras. 
It should be noted that one LGA space is not necessarily 
commutative with another, but this is seen as a strength of 
the system, rather than a weakness, and has many ap-
plications in numerous fields outside of LGA, such as 
Quantum Mechanics. For more on this, see, my work enti-
tled “The shape of a photon” will discuss. However, it is 
also worth noting that whatever the LGA is graphing it is 
not the initial real valued function, or its complex roots 
function (if one exists). We can tell this because of the 
results of our Quadratic Formula, where 1 + 3i and 1 – 3i 
became 2 and 4 instead. The Real function is our par-
abolic curve, the imaginary curve are the roots provided 
by the quadratic and the LGA curve appears to be a map 
between these two with its own set of roots and coordi-
nates. This suggests that the LGA may represent some 
kind of hereto unknown change of basis or coordinate 
system. 
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Appendix A.  
Python code for cubic equation (LGA). For a more gener-
al case, see Appendix C below. 

from plotly.graph_objs import * 
import plotly 
import  plotly.graph_objs as go 
import math  

#a more cubic form (x+x)(y+y) 
space = [] 
for i in range(-5, 6): 
    for c in range(-5, 6): 
        y = (i, c) 
        space.append(y) 

n = [] 
v = [] 
h = [] 
for i in space: 
    for c in space: 
        u = (i[0]*c[0])*-1 
        p = i[1]*c[1] 
        g = u+p 
        n.append(g) 
        v.append(c[0]+i[1]) 
        h.append(i[0]+c[1]) 

n1 = np.array(n).reshape(int(math.sqrt(len(n))), int(math-
.sqrt(len(n)))) 
n1 = np.rot90(n1, -3) 

pz = int(math.sqrt(len(n))) 
x = list(range(pz)) 

data = [go.Mesh3d( 
                x = h, 
                y = v, 
                z = n, 
                #alphahull=0, 
                colorscale=colourscales[-1], 
            ), 
        ] 
layout = go.Layout(dict(title='Complex', 
            titlefont= {"size": 14}, 
              font={'color':'black'}, 
              paper_bgcolor= 'white', 
              plot_bgcolor= "white", 
              hovermode='closest')) 
figure = dict(data=data, layout = layout) 
iplot(figure) 

Appendix B.  
Python code for the division of (x!∆+3∆)/(y!∆+4∆).  

#(x(xnor)+3)/(x(xnor)+4) Division Logic Gate Algebra 
graphed in 3-D 
n = [] 
v = [] 

h = [] 
for i in range(-10, 11): 
    for c in range(-10, 11): 
        if c != 0: 
            u = (i/c)*-1 
        else: 
            u = 0 
        p = 3/4 
        g = (u+p) 
        n.append(g) 
        v.append(i) 
        h.append(c) 
  
data = [go.Mesh3d( 
                x = h, 
                y = v, 
                z = n 
            ), 
        ] 
layout = go.Layout(dict(title='Complex', 
            titlefont= {"size": 14}, 
              font={'color':'black'}, 
              paper_bgcolor= 'white', 
              plot_bgcolor= "white", 
              hovermode='closest')) 

figure = dict(data=data, layout = layout) 
iplot(figure) 

Appendix C.  
This python code will generate any number of 3-dimen-
sional surface graphs based on the 16-dimensional Di-
mensional Gate Operators shown in Figure 20. When you 
run the code, you will be prompted to enter in a set of 
logic gates. The logic gates are labelled ‘sedens’ in the 
code and are the exact inverse correspondence to those 
shown in Figure 20.  

The one other variable that can be altered in this code is 
the ‘power’ variable. If the power variable is set to ‘2’, 
then we have a quadratic, ‘3’ (as in the example below) 
gives a cubic curve and so on. 

from plotly.graph_objs import * 
import plotly 
import  plotly.graph_objs as go 

b = input("Input a Logic Gate: ") 

sedens = {'A': [1,1,1,1], 'B': [1,1,1,-1], 'C': [1,1,-1,1], 'D':
[1,1,-1,-1], ‘E':[1,-1,1,1], ‘F’:[1,-1,1,-1], 'G':[1,-1,-1,1], 
'H':[1,-1,-1,-1], 'I':[-1,1,1,1], 'J':[-1,1,1,-1], 'K':[-1,1,-1,1], 
‘L':[-1,1,-1,-1], 'M':[-1,-1,1,1], 'N':[-1,-1,1,-1], 'O':
[-1,-1,-1,1], 'P':[-1,-1,-1,-1]} 

power=3 
def replace1(boz): 
    try: 
        boz = boz.replace(',', '') 
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        boz2 = boz.replace(' ', '') 
        boz = boz.split() 
        return(boz, boz2) 
    except: 
        pass 

def sed2(list1): 
    got=[] 
    for i in list1: 
        for c in list1: 
            if i == c: 
                got.append(1) 
            else: 
                p = (sum(sedens[i])+sum(sedens[c])) 
                got.append(p) 
    return(got) 
funcs = [] 
srce = (replace1(b)) 
(list1, list2) = srce 
lens = len(list1) 
go = (sed2(list1)) 

if lens <= 2: 
    start= -6 
    end = 7 
elif 2 < lens < 4: 
    start= -5 
    end = 6 
elif 3 < lens < 5: 
    start= -4 
    end = 5 
elif 4 < lens < 6: 
    start= -2 
    end = 3 
else: 
    start = -1 
    end = 2 

print(start, end) 
p = product(list2, repeat=power) 
print(list1) 

t = [] 
for i in p: 
    x = list(i) 
    t.append(x) 

r0 = [] 
for i in t: 
    x = '\']*perms[\''.join(i) 
    r0.append(x) 

r = [] 
for i in r0: 
    jk = 'perms[\'' + i + '\']' 
    r.append(jk) 

perms1 = product(range(start, end), repeat=lens) 

#use the perms to build a dictionary with keys and values 
from the list, 
test=[] 
for cc in perms1: 
    gg = list(zip(list1, cc)) 
    test.append(gg) 

past = [] 
for chi in test: 
    perms={} 
    for rei in chi: 
        perms[rei[0]]=rei[1] 
    res = [eval(i) for i in r] 
    res2 = [res[a]*go[a] for a in range(len(go))] 
    piece = sum(res2) 
    past.append(piece) 

perms2 = product(range(start, end), repeat=lens) 

vee=[] 
hee=[] 
for i in perms2: 
    hee.append(i[0]) 
    vee.append(i[1]) 

print(len(past), len(vee), len(hee)) 

data = [go.Mesh3d( 
                x = hee, 
                y = vee, 
                z = past 
            ), 
        ] 
layout = go.Layout(dict(title='Complex Parabolic Curve', 
            titlefont= {"size": 14}, 
              font={'color':'black'}, 
              paper_bgcolor= 'white', 
              plot_bgcolor= "white", 
              hovermode='closest')) 

figure = dict(data=data, layout = layout) 
iplot(figure) 

Two examples of the above code using a power value of 3 
and 4 respectively produces the following outputs: 

Input a Logic Gate: G, C, C 
-5 6 
['G', 'C', 'C'] 
1331 1331 1331 

Input a Logic Gate: N, N, L 
-5 6 
['N', 'N', 'L'] 
1331 1331 1331 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Fig. 29. The complex parabolic curve G, C, C.  

Fig. 30. The complex parabolic curve N, N, L.  

Appendix D. 
This python code reproduces the three colored plots 
shown in Figure 23. None of the variable names have any 
meaning, they are simply chosen so as not to conflict. 

import plotly.graph_objects as go 
import numpy as np 

da1 = [] 
ma1 = [] 
so1 = [] 
la1 = [] 
bla1 = [] 
a = 1 
b = -5 
t = list(range(-50, 50)) 

for cc in t: 
    for yc in t: 
        pc = ((cc**2)/2)-((yc**2)/2)+10 
        po = (2*(cc**2))+(2*yc)+10 
        d = [a, -cc, b, yc] 
        e = d[0]*d[2] 
        if e < 0: 
            e = e*-1 
        e1 = d[0]*d[3] 
        if e1 < 0: 
            e1 = e1*-1 
        e2 = d[1]*b 
        if e2 < 0: 
            e1 = e1*-1 
        e3 = (d[1]*b)*-1 
        e4 = (d[1]*d[3])*-1 
        e5 = (e+e)+(e1+e1)+(e2+e3)+(e4+e4) 
        da1.append(e5) 
        ma1.append(cc) 
        so1.append(yc) 
        la1.append(pc) 
        bla1.append(po) 
         
fig = go.Figure(data=[go.Mesh3d(x=ma1, y=so1, z=da1, 
color='cyan')]) 
fig.add_trace(go.Mesh3d(x=ma1, y=so1, z=la1)) 
fig.add_trace(go.Mesh3d(x=ma1, y=so1, z=bla1)) 
fig.show() 

Appendix E.  
This python code reproduces the colored plots shown in 
Figure 19.  

import plotly.graph_objects as go 
import numpy as np 

da2 = [] 
ma2 = [] 
so2 = [] 
la2 = [] 
bla2 = [] 

for i in range(-30, 30): 
    for x in range(-30, 30): 
        y = np.array([i, 1]) 
        c = np.array([x, 1]).reshape(2, -1) 
        g = y*c 
        d = (np.abs(g)*2) 
        d1 = np.sum(d) 
        f = np.array([[0, 2],[-2, 0]]) 
        m = (g*f) 
        m1 = np.sum(m) 
        kk = np.sum((d+m)/2) 
        bb = ((x**2) + i + 1) 
        d2 = d1*-1 
        da2.append(i) 
        ma2.append(x) 
        so2.append(kk) 
        la2.append(d2) 
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        bla2.append(d1) 

da3 = np.ravel(da2).tolist() 
ma3 = np.ravel(ma2).tolist() 
so3 = np.ravel(so2).tolist() 
la3 = np.ravel(la2).tolist() 
bla3 = np.ravel(bla2).tolist() 

fig = go.Figure(data=[go.Mesh3d(x=ma3, y=da3, z=bla3, 
color='cyan')]) 
fig.add_trace(go.Mesh3d(x=da3, y=ma3, z=la3)) 
fig.show() 

Appendix F.  
This python code recreates the graph in Figure 27.  

so4 = [] 
la4 = [] 
ta4 = [] 
so5 = [] 
la6 = [] 
ta7 = [] 

for im in range(-3, 4): 
    for xs in range(-3, 4): 
        for gs in range(-3, 4): 
            for km in range(-3, 4): 
                y = np.array([im, 1]) 
                c = np.array([xs, 1]).reshape(2, -1) 
                g = y*c 
                d = (np.abs(g)*2) 
                d1 = np.sum(d) 
                f = np.array([[0, 2],[-2, 0]]) 
                m = (g*f) 
                m1 = np.sum(m) 
                kk = np.sum((d+m)/2) 
                bb = ((xs**2) + im + 1) 
                so5.append(kk) 
                la6.append(km) 
                ta7.append(d1) 
                so4.append(im) 
                la4.append(xs) 
                ta4.append(gs) 

ta5= [] 
for im2 in range(-30, 30): 
    for xs2 in range(-30, 30): 
        ps = ((im2**2)/2)-((xs2**2)/2)+10 
        ta5.append(ps) 

fig = go.Figure(data = go.Cone( 
    x=so4, 
    y=la4, 
    z=ta4, 
    u=la6, 
    v=la4, 
    w=so5, 
    colorscale='Blues', 
    sizemode="absolute", 

    sizeref=40)) 

fig.update_layout(scene=dict(aspectratio=dict(x=1, y=1, 
z=0.8), camera_eye=dict(x=1.2, y=1.2, z=0.6))) 
fig.show() 

Appendix G. 
This code produces the plot in Figure 5 but can also be 
modified to produce Figures 3 and 4 as well. 

import plotly.graph_objects as go 
import numpy as np 

do2 = [] 
re2 = [] 
so2 = [] 
la2 = [] 
di2 = [] 
ta2 = [] 

t = list(range(-10, 10)) 

for i in t: 
    d = (i**2 + 1) 
    do2.append(d) 
    di2.append(i) 
     
for x in t: 
    e = (((x**2)*-1) - 0.25) 
    so2.append(x) 
    re2.append(e) 

fa2=[] 
sa2=[] 
ba2=[] 
fla2 = [] 
sre2 = [] 
fra2 = [] 

t = list(range(len(do2))) 

for i in di2: 
    for k in so2: 
        e = (do2[i]*re2[k]) 
        fla2.append(e) 
        sre2.append(i) 
        fra2.append(k) 
        if i < 0 and k >0: 
            b = (do2[i]*re2[k])*-1 
            fa2.append(b) 
            ba2.append(i) 
            sa2.append(k) 
        elif i > 0 and k < 0: 
            b = (do2[i]*re2[k])*-1 
            fa2.append(b) 
            ba2.append(i) 
            sa2.append(k) 
        elif i > 0 and k > 0: 
            b = (do2[i]*re2[k]) 
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            fa2.append(b) 
            ba2.append(i) 
            sa2.append(k) 
        else: 
            b = (do2[i]*re2[k]) 
            fa2.append(b) 
            ba2.append(i) 
            sa2.append(k) 

fa3 = np.ravel(fa2).tolist() 
sa3 = np.ravel(sa2).tolist() 
ba3 = np.ravel(ba2).tolist() 
fla3 = np.ravel(fla2).tolist() 
sre3 = np.ravel(sre2).tolist() 
fra3 = np.ravel(fra2).tolist() 

fig = go.Figure(data=[go.Mesh3d(x=ba3, y=sa3, z=fa3)]) 
fig.add_trace(go.Mesh3d(x=sre3, y=fra3, z=fla3)) 
fig.show()   


